Phy5646 PerturbationExample1

From PhyWiki
Revision as of 16:41, 5 February 2010 by ChelseyMorien (talk | contribs) (New page: Posted by student team #5 (Chelsey Morien, Anthony Kuchera, Jeff Klatsky) Adapted from Zettili Quantum Mechanics - Concepts and Application; Solved Problem 9.6 Consider a system whose Ha...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Posted by student team #5 (Chelsey Morien, Anthony Kuchera, Jeff Klatsky)

Adapted from Zettili Quantum Mechanics - Concepts and Application; Solved Problem 9.6

Consider a system whose Hamiltonian is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_0\begin{pmatrix} 1 + \lambda & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 3 & -2\lambda \\ 0 & 0 & -2\lambda & 7 \end{pmatrix} } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda \ll 1 }

(a) By decomposing the Hamiltonian into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H = \mathcal H_0 + \mathcal H' } , find the eigenvalues and eigenvectors of the unperturbed Hamiltonian.

(b) Diagonalize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } to find the exact eigenvalues of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } ; expand each eigenvalue to the second power of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda }

(c) Using first and second-order non-degenerate perturbation theory, find the approximate eigenenergies of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } and the eigenstates to the first order. Compare these with the exact values obtained in (b).

Solution:

(a) The matrix of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } can be separated:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H = \mathcal H_0 + \mathcal H' = E_0\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix} + E_0\begin{pmatrix} \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2\lambda \\ 0 & 0 & -2\lambda & 0 \end{pmatrix} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_0 } is already diagonalized, so reading off its eigenvalues and eigenstates are trivial:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1^{(0)} = E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2^{(0)} = 8E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_3^{(0)} = 3E_0,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_4^{(0)} = 7E_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_2\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_3\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} ,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_4\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} }

(b) The diagonalization of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H } leads to the following equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} (1 + \lambda)E_0 - E & 0 & 0 & 0 \\ 0 & 8E_0 - E & 0 & 0 \\ 0 & 0 & 3E_0 - E & -2\lambda E_0 \\ 0 & 0 & -2E_0\lambda & 7E_0 - E \end{pmatrix} }