Phy5646/homeworkintimeperturbation

From PhyWiki
Revision as of 21:50, 29 April 2010 by XuJiang (talk | contribs)
Jump to navigation Jump to search

Problem in Time Dependent Perturbation theory: Magnetic Resonance

Consider the Hamiltonian

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{1}(t)=\gamma e^{i\omega t}|1\rangle\langle2|+\gamma e^{-i\omega t}|2\rangle\langle1|}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{2}>E_{1}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega} are real and positive. At the time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0} assume thatthe lower energy level is populated, i.e. the probability for the level 1 is one and the one for level 2 is zero.

(a) Assuming that the wavefuction of the system is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi=a_{1}(t)e^{-iE_{1}t/\hbar}|1\rangle+a_{2}(t)e^{-iE_{2}t/\hbar}|2\rangle}

(b) Solve the coupled differential equations obtained in (a). For this purporse reduce the coupled equations to a single second order differential equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{1}} . The solutions are of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{j}(t)=C_{j}e^{i\lambda_{+}t}+D_{j}e^{i\lambda_{-}t},\ j=1,2} . Obtain the frequenciesFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{+}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{-}} .

(c) Determine the coefficients Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{1}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{2}} , and using the initial conditions spedified above. Note that the coefficients are not all independent( and satisfy differential equations).

(d) Obtain the time-dependent probabilities of finding the system in level 1 and in level 2.

(e) Consider the amplitude of the probability of finding the system in state 2 as a function of . What is the resonance condition? Obtain the full width at half maximum of the resonance.

Solution:

(a)

and are orthogonal

(b)

hence