From FSUPhysicsWiki

Revision as of 18:59, 8 April 2014 by Oskarvafek (Talk | contribs)
(diff) ← Older revision | Current revision (diff) | Newer revision → (diff)
Jump to: navigation, search


Welcome to the Quantum Mechanics A PHY5645 Fall2008/2009

Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian \mathcal{H}, it describes how a state |\Psi\rangle evolves in time.

This is the first semester of a two-semester graduate level sequence, the second being PHY5646 Quantum B. Its goal is to explain the concepts and mathematical methods of Quantum Mechanics, and to prepare a student to solve quantum mechanics problems arising in different physical applications. The emphasis of the courses is equally on conceptual grasp of the subject as well as on problem solving. This sequence of courses builds the foundation for more advanced courses and graduate research in experimental or theoretical physics.

The key component of the course is the collaborative student contribution to the course Wiki-textbook. Each team of students is responsible for BOTH writing the assigned chapter AND editing chapters of others.

Team assignments: Fall 2009 student teams

Fall 2009 Midterm is October 15

Outline of the Course

Chapter 1: Physical Basis of Quantum Mechanics

Chapter 2: Schrödinger Equation

Chapter 3: Operators, Eigenfunctions, and Symmetry

Chapter 4: Motion in One Dimension

Chapter 5: Discrete Eigenvalues and Bound States - The Harmonic Oscillator and the WKB Approximation

Chapter 6: Time Evolution and the Pictures of Quantum Mechanics

Chapter 7: Angular Momentum

Chapter 8: Central Forces

Chapter 9: The Path Integral Formulation of Quantum Mechanics

Chapter 10: Continuous Eigenvalues and Collision Theory

Personal tools