Problem Set 3
Ising antiferromagnet on a ”bipartite” lattice
Hamiltonian:
Failed to parse (syntax error): {\displaystyle H = \frac{J}{2} \sum_{<ij>} S_i S_j -− h\sum_i S_i } ,
with the sum is over all nearest neighbor sites i and j. Note that now the interaction between spins minimizes the energy when the spins anti-allign, i.e. for Failed to parse (syntax error): {\displaystyle S_i = −- S_j\;} . A bipartite lattice is one that has two sublattices, so that each spin on sublattice A interacts only with some spin on the other sublattice B. In this case, in an antiferromagnetic state, each sublattice assumes a uniform magnetization. We can introduce the magnetization for each sublattice
The average magnetization then can be written as
and the so-called ”staggered” magnetization is defined by the difference between the two sublattices
For perfect ferromagnetic order , while for perfect antiferromagnetic order .
(1) Use Weiss mean-field decoupling to replace one of the spins in the Hamiltonian by its thermal average. The Weiss field experienced by a given spin is then proportional to the sublattice magnetization on the other sublattice. Write down self-consistent equations for and , and express them through the
order parameters and .
(2) Assume that , so that , and solve the mean-field equations by expanding in . Determine the Neel (ordering) temperature, and calculate the order-parameter exponent .
(3) Now consider a small external field , so that both order parameters can assume a nonzero value (Note: will be small). By keeping only the leading terms in and , calculate the uniform spin susceptibility , as a function of temperature. Plot as a function of temperature, and show that it has a cusp around .
(4) Imagine adding a ”staggered” external field , which would be positive on sublattice A, but would be negative on sublattice B. Concentrate on the system with no uniform field , and determine the behavior of the staggered susceptibility
. Show that blows up at the Neel temperature.