Phy5645/HO Virial Theorem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 13: Line 13:
We can now write the average potential for the <math>n^{\text{th}}</math> state of the harmonic oscillator as
We can now write the average potential for the <math>n^{\text{th}}</math> state of the harmonic oscillator as


<math> \langle V \rangle = \frac{k}{4\beta^2}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>
<math> \langle V \rangle = \frac{\hbar k}{4m\omega}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>


<math>  = \frac{k}{4\beta^2} \langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle </math>
<math>  = \frac{\hbar k}{4m\omega}\langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle </math>


<math> = \frac{k}{4\beta^2} \left[ \langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle \right] </math>
<math> = \frac{\hbar k}{4m\omega}[\langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|(\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle] </math>


Now, the first two terms disappear, as the raising and lowering operators act on the eigenkets:
The first two terms are zero because


<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>
<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>

Revision as of 16:56, 8 August 2013

The average potential energy is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \hat{V} \rangle = \tfrac{1}{2}k\langle \hat{x}^2 \rangle.}

Recall from a previous problem that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{x}=\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger}),}

or

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{1}{2}k\hat{x}^2=\frac{\hbar k}{4m\omega}(\hat{a}+\hat{a}^\dagger)^2.}

We can now write the average potential for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{\text{th}}} state of the harmonic oscillator as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle V \rangle = \frac{\hbar k}{4m\omega}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{\hbar k}{4m\omega}\langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{\hbar k}{4m\omega}[\langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|(\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle] }

The first two terms are zero because

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 }

and the operator in the third term can be written like:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} = 1 + 2\hat{N} \text{ where } \hat{N} = \hat{a}^\dagger\hat{a} }

since

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{a}\hat{a}^\dagger |n \rangle = \hat{a} (n+1)^{\frac{1}{2}}|n + 1 \rangle = (n+1)|n \rangle }

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{N}|n \rangle = n|n \rangle }

So, now we have that:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle V \rangle = \frac{k}{4\beta^2} \langle n|(1 + 2\hat{N}|n \rangle = \frac{k}{4\beta^2}(2n + 1)\langle n|n \rangle = \frac{k}{2\beta^2}(n + \frac{1}{2}) }

And, replacing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta^2 = \frac{m\omega_0}{\hbar} } , we find that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle V \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) }

And can check that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle T \rangle = \frac{1}{2m} \langle \hat{p} \rangle = \frac{1}{2} \langle E \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) }

Which shows rather nicely that the Virial Theorem holds for the Quantum Harmonic Oscillator.

(See Liboff, Richard Introductory Quantum Mechanics, 4th Edition, Problem 7.10 for reference.)

Back to Harmonic Oscillator Spectrum and Eigenstates