Phy5645/Angular Momentum Problem 1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 26: | Line 26: | ||
:<math> \hat{R}_{\Delta \phi} = \lim_{\Delta \phi / \delta \phi \rightarrow \infty} \left( \hat{I} + \frac{i}{\hbar} \delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \right)^{\Delta \phi / \delta \phi} = e^{i \Delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \hbar} </math>. | :<math> \hat{R}_{\Delta \phi} = \lim_{\Delta \phi / \delta \phi \rightarrow \infty} \left( \hat{I} + \frac{i}{\hbar} \delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \right)^{\Delta \phi / \delta \phi} = e^{i \Delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \hbar} </math>. | ||
The operator <math> \hat{R}_{\delta\vec{\phi}} \!</math> rotates <math> \mathbf{r} \!</math> to <math> \mathbf{r} + \delta\vec{\phi}\times\mathbf{r} \!</math> with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through <math> \delta \vec{\phi} \!</math> with <math> \mathbf{r} \!</math> fixed in space, then in the new coordinate frame this vector has the value <math> \mathbf{r} - \delta \vec{\phi} \times \mathbf{r} \!</math>. Thus, rotation of coordinates through <math> \delta \vec{\phi} \!</math> is generated by the operator <math> \hat{R}_{-\delta \vec{\phi}}.</math> | The operator <math> \hat{R}_{\delta\vec{\phi}} \!</math> rotates <math> \mathbf{r} \!</math> to <math> \mathbf{r} + \delta\vec{\phi}\times\mathbf{r} \!</math> with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through <math> \delta \vec{\phi} \!</math> with <math> \mathbf{r} \!</math> fixed in space, then in the new coordinate frame this vector has the value <math> \mathbf{r} - \delta \vec{\phi} \times \mathbf{r} \!</math>. Thus, rotation of coordinates through <math> \delta \vec{\phi} \!</math> is generated by the operator <math> \hat{R}_{-\delta \vec{\phi}}.</math> | ||
Back to [[Angular Momentum as a Generator of Rotations in 3D]] | |||
Revision as of 21:57, 28 August 2013
(a)
(b) Let be an infinitesimal angle so that in the limit that . For the infinitesimal rotation
so that
- .
In the Taylor series expansion of above we have only kept terms of . [The expression is valid only to terms of .] In this manner we obtain
For a finite rotational displacement through the angle , we apply the operator , times:
and pss to the limit or, equivalently, .
- .
The operator rotates to with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through with fixed in space, then in the new coordinate frame this vector has the value . Thus, rotation of coordinates through is generated by the operator