Phy5645/Angular Momentum Problem 1: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
:<math> \hat{R}_{\Delta \phi} = \lim_{\Delta \phi / \delta \phi \rightarrow \infty} \left( \hat{I} + \frac{i}{\hbar} \delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \right)^{\Delta \phi / \delta \phi} = e^{i \Delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \hbar} </math>.  
:<math> \hat{R}_{\Delta \phi} = \lim_{\Delta \phi / \delta \phi \rightarrow \infty} \left( \hat{I} + \frac{i}{\hbar} \delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \right)^{\Delta \phi / \delta \phi} = e^{i \Delta \vec{\phi} \cdot \mathbf{\hat{\mathbf{L}}} \hbar} </math>.  


The operator <math> \hat{R}_{\delta\vec{\phi}} \!</math> rotates <math> \mathbf{r} \!</math> to <math> \mathbf{r} + \delta\vec{\phi}\times\mathbf{r} \!</math> with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through <math> \delta \vec{\phi} \!</math> with <math> \mathbf{r} \!</math> fixed in space, then in the new coordinate frame this vector has the value <math> \mathbf{r} - \delta \vec{\phi} \times \mathbf{r} \!</math>. Thus, rotation of coordinates through <math> \delta \vec{\phi} \!</math> is generated by the operator <math> \hat{R}_{-\delta \vec{\phi}}.</math>  
The operator <math> \hat{R}_{\delta\vec{\phi}} \!</math> rotates <math> \mathbf{r} \!</math> to <math> \mathbf{r} + \delta\vec{\phi}\times\mathbf{r} \!</math> with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through <math> \delta \vec{\phi} \!</math> with <math> \mathbf{r} \!</math> fixed in space, then in the new coordinate frame this vector has the value <math> \mathbf{r} - \delta \vec{\phi} \times \mathbf{r} \!</math>. Thus, rotation of coordinates through <math> \delta \vec{\phi} \!</math> is generated by the operator <math> \hat{R}_{-\delta \vec{\phi}}.</math>


--------
Back to [[Angular Momentum as a Generator of Rotations in 3D]]
 
(Note:  This problem is excerpted from ''Introductory Quantum Mechanics'', 2nd edition, p377-p379, which is written by ''Richard L. Liboff''.)

Revision as of 21:57, 28 August 2013

(a)

(b) Let be an infinitesimal angle so that in the limit that . For the infinitesimal rotation

so that

.

In the Taylor series expansion of above we have only kept terms of . [The expression is valid only to terms of .] In this manner we obtain

For a finite rotational displacement through the angle , we apply the operator , times:

and pss to the limit or, equivalently, .

.

The operator rotates to with respect to a fixed coordinate frame. If, on the other hand, the coordinate frame is rotated through with fixed in space, then in the new coordinate frame this vector has the value . Thus, rotation of coordinates through is generated by the operator

Back to Angular Momentum as a Generator of Rotations in 3D