Phy5645/HO Virial Theorem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
For the QHO, the average potential energy is written
The average potential energy is given by


<math> \langle V \rangle = \frac{k}{2}\langle \hat{x}^2 \rangle </math>
<math> \langle \hat{V} \rangle = \tfrac{1}{2}k\langle \hat{x}^2 \rangle.</math>


It is convenient to re-write the position operator as
Recall from a previous problem that


<math> \hat{x} = \frac{1}{\sqrt{2}\beta}(\hat{a} + \hat{a}^\dagger)   \text {  where  }  \beta^2 = \frac{m\omega_0}{\hbar} </math>
<math>\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger}),</math>


<math> \Rightarrow \hat{x}^2 = \frac{1}{2\beta^2}(\hat{a} + \hat{a}^\dagger)^2 </math>
or


Now, we can write the average potential for the <math> n^{th} </math> state of the QHO like:
<math>\tfrac{1}{2}k\hat{x}^2=\frac{\hbar k}{4m\omega}(\hat{a}+\hat{a}^\dagger)^2.</math>


<math> \langle V \rangle = \frac{k}{4\beta^2}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>
We can now write the average potential for the <math>n^{\text{th}}</math> state of the harmonic oscillator as


<math> = \frac{k}{4\beta^2} \langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle </math>
<math> \langle V \rangle = \frac{\hbar k}{4m\omega}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>


<math> = \frac{k}{4\beta^2} \left[ \langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle \right] </math>
<math> = \frac{\hbar k}{4m\omega}\langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle </math>


Now, the first two terms disappear, as the raising and lowering operators act on the eigenkets:
<math> = \frac{\hbar k}{4m\omega}[\langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|(\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle] </math>
 
The first two terms are zero because


<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>
<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>


and the operator in the third term can be written like:
and the operator in the third term can be written as
 
<math> \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} = 1 + 2\hat{N} \text{  where  } \hat{N} = \hat{a}^\dagger\hat{a} </math>
 
since
 
<math> \hat{a}\hat{a}^\dagger |n \rangle = \hat{a} (n+1)^{\frac{1}{2}}|n + 1 \rangle = (n+1)|n \rangle </math>


and <math> \hat{N}|n \rangle = n|n \rangle </math>
<math> \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} = 2\hat{n}+1.</math>


So, now we have that:
Therefore,


<math> \langle V \rangle = \frac{k}{4\beta^2} \langle n|(1 + 2\hat{N}|n \rangle = \frac{k}{4\beta^2}(2n + 1)\langle n|n \rangle = \frac{k}{2\beta^2}(n + \frac{1}{2}) </math>
<math> \langle \hat{V} \rangle = \frac{\hbar k}{4m\omega}(2n + 1)\langle n|n \rangle = \frac{\hbar k}{2m\omega}\left (n + \tfrac{1}{2}\right ),</math>


And, replacing <math> \beta^2 = \frac{m\omega_0}{\hbar} </math>, we find that
or, noting that <math>k=m\omega^2,\!</math>  


<math> \langle V \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) </math>
<math> \langle \hat{V} \rangle = \tfrac{1}{2}\left (n + \tfrac{1}{2}\right )\hbar\omega.</math>


And can check that
Similarly, using the fact that


<math> \langle T \rangle = \frac{1}{2m} \langle \hat{p} \rangle = \frac{1}{2} \langle E \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) </math>
<math>\hat{p}=-i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}-\hat{a}^{\dagger}),</math>


Which shows rather nicely that the Virial Theorem holds for the Quantum Harmonic Oscillator.
we may show that


(See Liboff, Richard ''Introductory Quantum Mechanics'', 4th Edition, Problem 7.10 for reference.)
<math> \langle \hat{T} \rangle = \frac{\langle\hat{p}^2\rangle}{2m}=\tfrac{1}{2}\left (n + \tfrac{1}{2}\right )\hbar\omega=\langle\hat{V}\rangle.</math>


Back to [[Harmonic Oscillator Spectrum and Eigenstates]]
Back to [[Harmonic Oscillator Spectrum and Eigenstates#Problems|Harmonic Oscillator Spectrum and Eigenstates]]

Latest revision as of 13:33, 18 January 2014

The average potential energy is given by

Recall from a previous problem that

or

We can now write the average potential for the state of the harmonic oscillator as

The first two terms are zero because

and the operator in the third term can be written as

Therefore,

or, noting that

Similarly, using the fact that

we may show that

Back to Harmonic Oscillator Spectrum and Eigenstates