Phy5645/Particle in Uniform Magnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
----
'''(a)''' In the symmetric gauge, <math>A_{x}=-\tfrac{1}{2}By,</math> <math>A_{y}=\tfrac{1}{2}Bx,</math> and <math>A_{z}=0.\!</math>


An electron moves in magnetic field which is in the z direction, <math>\overrightarrow{B}=B\hat z</math>, and the Landau gauge is  <math>\overrightarrow{A}=(\frac{-By}{2},\frac{Bx}{2},0)</math>
<math>
\begin{align}
\left [{\hat{\Pi}_{x},\hat{\Pi}_{y}} \right ]&=\left [\hat{p}_{x}-\frac{e}{c}A_{x},\hat{p}_{y}-\frac{e}{c}A_{y}\right ]=\left [\hat{p}_{x}+\frac{eB}{2c}\hat{y},\hat{p}_{y}-\frac{eB}{2c}\hat{x}\right ] \\
&=\left (\left [\hat{p}_{x},\hat{p}_{y}\right ]-\left [\hat{p}_{x},\frac{eB}{2c}\hat{x}\right ]+\left [\frac{eB}{2c}\hat{y},\hat{p}_{y}\right ]-\left [\frac{eB}{2c}\hat{y},\frac{eB}{2c}\hat{x}\right ]\right ) \\
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c}
\end{align}
</math>


*Evaluate <math>\left [{\Pi _{x},\Pi _{y}} \right ]</math>
'''(b)''' The Hamiltonian for the system is
*Using the hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.


----
<math>
\begin{align}
\hat{H}&=\frac{1}{2m}\left (\hat{\mathbf{p}}-\frac{e}{c}\mathbf{A}\right )^2 \\
&=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}.
\end{align}
</math>


*According to the Ladau gauge, <math>\text{A}_{x}=\frac{-By}{2}\text{   A}_{y}=\frac{Bx}{2}\text{ A}_{z}=0</math>
If we label the first two terms as <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>, and the last one as <math>\hat{H}_{2}=\frac{\hat{p}_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>\hat{H}=\hat{H}_{1}+\hat{H}_{2}.</math> Using the identity,


<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math>
<math>\hat{A}^2+\hat{B}^2=\left (\hat{A}-i\hat{B}\right )\left (\hat{A}+i\hat{B}\right )-i\left [\hat{A},\hat{B}\right ],</math>


<math>=\left [{\left ({P_{x}+\frac{eBy}{2c}} \right ),\left ({P_{y}-\frac{eBx}{2c}} \right )} \right ]</math>
we may rewrite <math>\hat{H}_1</math> as


<math>=\left \lbrace {\left [{P_{x},P_{y}} \right ]-\left [{P_{x}, \frac{eBx}{2c}} \right ]+\left [{\frac{eBy}{2c},P_{y}} \right ]-\left [{\frac{eBy}{2c},\frac{eBx}{2c}} \right ]} \right \rbrace </math>
<math>\hat{H}_1=\frac{1}{2m}\left (\hat{\Pi}_x-i\hat{\Pi}_y\right )\left (\hat{\Pi}_x+i\hat{\Pi}_y\right )+\frac{\hbar eB}{2mc}.</math>


<math>\text{= -}\frac{eB}{2c}(-i\hbar )+\frac{eB}{2c}(i\hbar )</math>
If we now define the operators,
<math>\text{=}i\hbar \frac{eB}{c}</math>


*The hamiltonian fot the system is;
<math>\hat{a}=\sqrt{\frac{c}{2\hbar eB}}\left (\hat{\Pi}_x+i\hat{\Pi}_y\right )</math>


<math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math>
and


<math> =\frac{\left ({P_{x}-\frac{e}{c}A_{x}} \right )^{2}}{2m}+\frac{\left ({P_{y}-\frac{e}{c}A_{y}} \right )^{2}}{2m}+\frac{\left ({P_{z}-\frac{e}{c}A_{z}} \right )^{2}}{2m}</math>
<math>\hat{a}^\dagger=\sqrt{\frac{c}{2\hbar eB}}\left (\hat{\Pi}_x-i\hat{\Pi}_y\right ),</math>


<math>\text{=}\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}+\frac{P_{z}^{2}}{2m}</math>
this becomes


If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>,
<math>\hat{H}_1=\hbar\omega\left (\hat{a}^\dagger\hat{a}+\tfrac{1}{2}\right ),</math>
The hamiltonian will be <math>\text{H=H}_{1}+H_{2}</math>.


<math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>
where <math>\omega=\frac{eB}{mc}.</math> This is just the Hamiltonian for a [[Harmonic Oscillator Spectrum and Eigenstates|harmonic oscillator]].  The contribution to the energy from this term is therefore


<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>
<math>E_1=\left (n+\tfrac{1}{2}\right )\hbar\omega.</math>


<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2m}\left ({\frac{m^{2}}{m^{2}}} \right )\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>
The remaining part of the Hamiltonian, <math>\hat{H}_2,</math> is just that of a free particle in one dimension, and thus its contribution to the energy is just <math>E_2=\frac{\hbar^2k_z^2}{2m}.</math> The total energy is then just


<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>
<math>E=\left (n+\tfrac{1}{2}\right )\hbar\omega+\frac{\hbar^{2}k_z^{2}}{2m},</math>


Then the hamiltonian will look like <math>\text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}</math>  where <math> \tilde{w}= \left ({\frac{eB}{cm}} \right )</math>  and <math>\tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )</math>.
which is just the result that we obtained working in the Landau gauge, as expected.


As we know, <math> \text{H}\Psi =E\Psi </math>
Back to [[Charged Particles in an Electromagnetic Field#Problem|Charged Particles in an Electromagnetic Field]].
 
<math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math>
 
<math>\text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math>
 
So now we can write that;
 
<math>\text{E}_{k,n}=\hbar\frac{eB}{cm}(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math>
 
----

Latest revision as of 13:36, 18 January 2014

(a) In the symmetric gauge, and

(b) The Hamiltonian for the system is

If we label the first two terms as , and the last one as , then we may write the Hamiltonian as Using the identity,

we may rewrite as

If we now define the operators,

and

this becomes

where This is just the Hamiltonian for a harmonic oscillator. The contribution to the energy from this term is therefore

The remaining part of the Hamiltonian, is just that of a free particle in one dimension, and thus its contribution to the energy is just The total energy is then just

which is just the result that we obtained working in the Landau gauge, as expected.

Back to Charged Particles in an Electromagnetic Field.