Phy5645/HO problem2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Problem 2: The expectation value of p in eigenstate. <math>\langle\Psi_n|p|\Psi_n\rangle=-i\sqrt{\frac{m\hbar\omega}{2}}\langle\Psi_n|\hat{a}-\hat{a}^{\dagger}|\Psi_n\rangle</math> <ma...)
 
No edit summary
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Problem 2:
In terms of the raising and lowering operators, the momentum operator is


The expectation value of p in eigenstate.  
<math>\hat{p}=-i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}-\hat{a}^{\dagger}).</math>


<math>\langle\Psi_n|p|\Psi_n\rangle=-i\sqrt{\frac{m\hbar\omega}{2}}\langle\Psi_n|\hat{a}-\hat{a}^{\dagger}|\Psi_n\rangle</math>
We now take its expectation value with respect to an arbitrary eigenstate of the harmonic oscillator:


<math>==-i\sqrt{\frac{m\hbar\omega}{2}}(\langle\Psi_n|\hat{a}\Psi_n\rangle-\langle\Psi_n|\hat{a}^{\dagger}\Psi_n\rangle)</math>
<math>\langle n|\hat{p}|n\rangle=-i\sqrt{\frac{m\hbar\omega}{2}}\langle n|(\hat{a}-\hat{a}^{\dagger})|n\rangle</math>
 
<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\langle n|\hat{a}|n\rangle-\langle n|\hat{a}^{\dagger}|n\rangle)</math>
        
        
<math>==-i\sqrt{\frac{m\hbar\omega}{2}}(\sqrt{n}\langle\Psi_n|\Psi_n-1\rangle-\sqrt{n+1}\langle\Psi_n|\Psi_n+1\rangle)</math>
<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\sqrt{n}\langle n|n-1\rangle-\sqrt{n+1}\langle n|n+1\rangle)</math>
 
<math>=0\!</math>
 
A similar intuitive argument as before would lead us to expect this result; one may think of the problem in momentum space as an effective [[Schrödinger Equation|Schrödinger equation]] in the "coordinate" <math>p\!</math> with a harmonic potential.


<math>=0</math>
Back to [[Harmonic Oscillator Spectrum and Eigenstates#Problems|Harmonic Oscillator Spectrum and Eigenstates]]

Latest revision as of 13:33, 18 January 2014

In terms of the raising and lowering operators, the momentum operator is

We now take its expectation value with respect to an arbitrary eigenstate of the harmonic oscillator:

A similar intuitive argument as before would lead us to expect this result; one may think of the problem in momentum space as an effective Schrödinger equation in the "coordinate" with a harmonic potential.

Back to Harmonic Oscillator Spectrum and Eigenstates