Phy5645/HO Virial Theorem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: ===Virial Theorem in the Case of the Quantum Harmonic Oscillator=== Prove that the Virial Theorem holds for the Harmonic Oscillator. (Show that the average kinetic energy, <math> \langle ...)
 
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Virial Theorem in the Case of the Quantum Harmonic Oscillator===
The average potential energy is given by


Prove that the Virial Theorem holds for the Harmonic Oscillator. (Show that the average kinetic energy, <math> \langle T \rangle </math> is equal to the average potential energy, <math> \langle V \rangle </math>.)
<math> \langle \hat{V} \rangle = \tfrac{1}{2}k\langle \hat{x}^2 \rangle.</math>


For the QHO, the average potential energy is written
Recall from a previous problem that


<math> \langle V \rangle = \frac{k}{2}\langle \hat{x}^2 \rangle </math>
<math>\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger}),</math>


It is convenient to re-write the position operator as
or


<math> \hat{x} = \frac{1}{\sqrt{2}\beta}(\hat{a} + \hat{a}^\dagger)   \text {  where  }  \beta^2 = \frac{m\omega_0}{\hbar} </math>
<math>\tfrac{1}{2}k\hat{x}^2=\frac{\hbar k}{4m\omega}(\hat{a}+\hat{a}^\dagger)^2.</math>


<math> \Rightarrow \hat{x}^2 = \frac{1}{2\beta^2}(\hat{a} + \hat{a}^\dagger)^2 </math>
We can now write the average potential for the <math>n^{\text{th}}</math> state of the harmonic oscillator as


Now, we can write the average potential for the <math> n^{th} </math> state of the QHO like:
<math> \langle V \rangle = \frac{\hbar k}{4m\omega}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>


<math> \langle V \rangle = \frac{k}{4\beta^2}\langle n|(\hat{a} + \hat{a}^\dagger)^2|n \rangle </math>
<math> = \frac{\hbar k}{4m\omega}\langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle </math>


<math> = \frac{k}{4\beta^2} \langle n|(\hat{a}^2 + \hat{a}^{\dagger 2} + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle </math>
<math> = \frac{\hbar k}{4m\omega}[\langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|(\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a})|n \rangle] </math>


<math> = \frac{k}{4\beta^2} \left[ \langle n|\hat{a}^2|n \rangle + \langle n|\hat{a}^\dagger|n \rangle + \langle n|\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}|n \rangle \right] </math>
The first two terms are zero because
 
Now, the first two terms disappear, as the raising and lowering operators act on the eigenkets:


<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>
<math> \langle n|n-2 \rangle = \langle n|n+2 \rangle = 0 </math>


and the operator in the third term can be written like:
and the operator in the third term can be written as
 
<math> \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} = 1 + 2\hat{N} \text{  where  } \hat{N} = \hat{a}^\dagger\hat{a} </math>
 
since


<math> \hat{a}\hat{a}^\dagger |n \rangle = \hat{a} (n+1)^{\frac{1}{2}}|n + 1 \rangle = (n+1)|n \rangle </math>
<math> \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} = 2\hat{n}+1.</math>


and <math> \hat{N}|n \rangle = n|n \rangle </math>
Therefore,


So, now we have that:
<math> \langle \hat{V} \rangle = \frac{\hbar k}{4m\omega}(2n + 1)\langle n|n \rangle = \frac{\hbar k}{2m\omega}\left (n + \tfrac{1}{2}\right ),</math>


<math> \langle V \rangle = \frac{k}{4\beta^2} \langle n|(1 + 2\hat{N}|n \rangle = \frac{k}{4\beta^2}(2n + 1)\langle n|n \rangle = \frac{k}{2\beta^2}(n + \frac{1}{2}) </math>
or, noting that <math>k=m\omega^2,\!</math>  


And, replacing <math> \beta^2 = \frac{m\omega_0}{\hbar} </math>, we find that
<math> \langle \hat{V} \rangle = \tfrac{1}{2}\left (n + \tfrac{1}{2}\right )\hbar\omega.</math>


<math> \langle V \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) </math>
Similarly, using the fact that


And can check that
<math>\hat{p}=-i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}-\hat{a}^{\dagger}),</math>


<math> \langle T \rangle = \frac{1}{2m} \langle \hat{p} \rangle = \frac{1}{2} \langle E \rangle = \frac{\hbar\omega_0}{2}(n + \frac{1}{2}) </math>
we may show that


Which shows rather nicely that the Virial Theorem holds for the Quantum Harmonic Oscillator.
<math> \langle \hat{T} \rangle = \frac{\langle\hat{p}^2\rangle}{2m}=\tfrac{1}{2}\left (n + \tfrac{1}{2}\right )\hbar\omega=\langle\hat{V}\rangle.</math>


(See Liboff, Richard ''Introductory Quantum Mechanics'', 4th Edition, Problem 7.10 for reference.)
Back to [[Harmonic Oscillator Spectrum and Eigenstates#Problems|Harmonic Oscillator Spectrum and Eigenstates]]

Latest revision as of 13:33, 18 January 2014

The average potential energy is given by

Recall from a previous problem that

or

We can now write the average potential for the state of the harmonic oscillator as

The first two terms are zero because

and the operator in the third term can be written as

Therefore,

or, noting that

Similarly, using the fact that

we may show that

Back to Harmonic Oscillator Spectrum and Eigenstates