Phy5645/HO problem2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\langle\Psi_n|p|\Psi_n\rangle=-i\sqrt{\frac{m\hbar\omega}{2}}\langle\Psi_n|\hat{a}-\hat{a}^{\dagger}|\Psi_n\rangle</math>
In terms of the raising and lowering operators, the momentum operator is


<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\langle\Psi_n|\hat{a}\Psi_n\rangle-\langle\Psi_n|\hat{a}^{\dagger}\Psi_n\rangle)</math>
<math>\hat{p}=-i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}-\hat{a}^{\dagger}).</math>
 
We now take its expectation value with respect to an arbitrary eigenstate of the harmonic oscillator:
 
<math>\langle n|\hat{p}|n\rangle=-i\sqrt{\frac{m\hbar\omega}{2}}\langle n|(\hat{a}-\hat{a}^{\dagger})|n\rangle</math>
 
<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\langle n|\hat{a}|n\rangle-\langle n|\hat{a}^{\dagger}|n\rangle)</math>
        
        
<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\sqrt{n}\langle\Psi_n|\Psi_n-1\rangle-\sqrt{n+1}\langle\Psi_n|\Psi_n+1\rangle)</math>
<math>=-i\sqrt{\frac{m\hbar\omega}{2}}(\sqrt{n}\langle n|n-1\rangle-\sqrt{n+1}\langle n|n+1\rangle)</math>
 
<math>=0\!</math>


<math>=0</math>
A similar intuitive argument as before would lead us to expect this result, due to the fact that the wave equation has a similar form in momentum space as it does in position space.


Back to [[Harmonic Oscillator Spectrum and Eigenstates]]
Back to [[Harmonic Oscillator Spectrum and Eigenstates]]

Revision as of 16:45, 8 August 2013

In terms of the raising and lowering operators, the momentum operator is

We now take its expectation value with respect to an arbitrary eigenstate of the harmonic oscillator:

A similar intuitive argument as before would lead us to expect this result, due to the fact that the wave equation has a similar form in momentum space as it does in position space.

Back to Harmonic Oscillator Spectrum and Eigenstates