Phy5645/Angular Momentum Problem 1: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
:<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math> | :<math> \hat{R}_{\Delta \phi} f = \left[ \exp \left( \Delta \phi \frac{\partial}{\partial \phi} \right) \right] f </math> | ||
:<math> = f(\phi) + \Delta \phi \frac{\partial f}{\partial \phi} + \frac{\left(\Delta\phi\right)^2}{2} \frac{\partial^2 f}{\partial \phi^2} + \cdots = f \left( \phi + \Delta \phi \right).</math> | :<math> = f(\phi) + \Delta \phi \frac{\partial f}{\partial \phi} + \frac{\left(\Delta\phi\right)^2}{2} \frac{\partial^2 f}{\partial \phi^2} + \cdots = f \left( \phi + \Delta \phi \right).</math> | ||
Back to [[Angular Momentum as a Generator of Rotations in 3D]] | Back to [[Angular Momentum as a Generator of Rotations in 3D]] |