Solution to Set 4: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 3: Line 3:
Cu, density <math> \rho= 8.885{g\over cm^3}</math>, atomic mass <math> m_a = 63.57 amu</math>, fcc structure
Cu, density <math> \rho= 8.885{g\over cm^3}</math>, atomic mass <math> m_a = 63.57 amu</math>, fcc structure


a. In <math>1 m^3</math>, the number of moles is  
'''a.''' In <math>1 m^3</math>, the number of moles is  
<math>{8.885 g\over 1 cm^3} {1 cm^3\over 5\times 10^6 m^3} {1 mol\over 63.55 g} = 1.40\times 10^5{mol\over m^3}</math>
<math>{8.885 g\over 1 cm^3} {1 cm^3\over 5\times 10^6 m^3} {1 mol\over 63.55 g} = 1.40\times 10^5{mol\over m^3}</math>


b. Atoms in <math>1 m^3</math>
'''b.''' Atoms in <math>1 m^3</math>
<math>{1.40\times 10^5 mol\over 1 m^3} {6.022\times 10^{23}\over 1 mol}= 8.43\times 10^{28} atoms</math>
<math>{1.40\times 10^5 mol\over 1 m^3} {6.022\times 10^{23}\over 1 mol}= 8.43\times 10^{28} atoms</math>


c. Since the bonds between the atoms are small compared to the diameter of the atom, we neglect the bonds for an estimate.The structure is fcc and the length of each side of the cube is  
'''c.''' Since the bonds between the atoms are small compared to the diameter of the atom, we neglect the bonds for an estimate.The structure is fcc and the length of each side of the cube is  
<math>2r=362 pm</math>, where r is the radius of one Cu atom.
<math>2r=362 pm</math>, where r is the radius of one Cu atom.


d. Atomic radius
'''d.''' Atomic radius
<math>p = {m_a\over v_s}</math>, where <math>v_s = {4\over 3} \pi r^3</math>
<math>p = {m_a\over v_s}</math>, where <math>v_s = {4\over 3} \pi r^3</math>
<math>p = {m_a\over {4\over 3} \pi r^3} </math>
<math>r = ({3 m_a\over 4 p \pi})^{1\over 3}</math>

Revision as of 17:57, 20 February 2009

Problem 1

Cu, density , atomic mass , fcc structure

a. In , the number of moles is

b. Atoms in

c. Since the bonds between the atoms are small compared to the diameter of the atom, we neglect the bonds for an estimate.The structure is fcc and the length of each side of the cube is , where r is the radius of one Cu atom.

d. Atomic radius , where