Phy5670/Phonon in Graphene: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: ==Introduction== ==Structure of Graphene== Carbon atoms in graphene are constructed on a honeycomb lattice, which is shown in Fig. 1. The circle and solid point together combine into a two...)
 
No edit summary
Line 3: Line 3:
Carbon atoms in graphene are constructed on a honeycomb lattice, which is shown in Fig. 1. The circle and solid point together combine into a two-point basis in the Bravais lattice. The carbon-carbon distance is <math>a~1.42{\AA}</math>. The primitive vectors are
Carbon atoms in graphene are constructed on a honeycomb lattice, which is shown in Fig. 1. The circle and solid point together combine into a two-point basis in the Bravais lattice. The carbon-carbon distance is <math>a~1.42{\AA}</math>. The primitive vectors are


<math>\vec{a_1}=\fact{\sqrt{3}}{2}a\hat{x}+\fact{3}{2}a\hat{y}</math>   
<math>\vec{a_1}=\frac{\sqrt{3}}{2}a\hat{x}+\frac{3}{2}a\hat{y}</math>   


<math>\vec{a_2}=-\fact{\sqrt{3}}{2}a\hat{x}+\fact{3}{2}a\hat{y}</math>
<math>\vec{a_2}=-\frac{\sqrt{3}}{2}a\hat{x}+\frac{3}{2}a\hat{y}</math>


Then the reciprocal lattice parameters can by generated by using <math>\vec{b_i}\cdot \vec{a_j}=2\pi\delta_{ij}, (i,j=1,2)</math>
Then the reciprocal lattice parameters can by generated by using <math>\vec{b_i}\cdot \vec{a_j}=2\pi\delta_{ij}, (i,j=1,2)</math>


<math>\vec{b_1}=\fact{2\pi}{a}(\fact{\sqrt{3}}{3}\hat{x}+\fact{1}{3}\hat{y})</math>   
<math>\vec{b_1}=\frac{2\pi}{a}(\frac{\sqrt{3}}{3}\hat{x}+\fact{1}{3}\hat{y})</math>   


<math>\vec{b_2}=\fact{2\pi}{a}(-\fact{\sqrt{3}}{2}a\hat{x}+\fact{3}{2}a\hat{y})</math>
<math>\vec{b_2}=\frac{2\pi}{a}(-\frac{\sqrt{3}}{2}a\hat{x}+\fact{3}{2}a\hat{y})</math>

Revision as of 17:11, 3 December 2010

Introduction

Structure of Graphene

Carbon atoms in graphene are constructed on a honeycomb lattice, which is shown in Fig. 1. The circle and solid point together combine into a two-point basis in the Bravais lattice. The carbon-carbon distance is . The primitive vectors are

Then the reciprocal lattice parameters can by generated by using

Failed to parse (unknown function "\fact"): {\displaystyle \vec{b_1}=\frac{2\pi}{a}(\frac{\sqrt{3}}{3}\hat{x}+\fact{1}{3}\hat{y})}

Failed to parse (unknown function "\fact"): {\displaystyle \vec{b_2}=\frac{2\pi}{a}(-\frac{\sqrt{3}}{2}a\hat{x}+\fact{3}{2}a\hat{y})}