Phy5670/RPA: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 5: Line 5:
<math> G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = \lim_{t_{\beta} \rightarrow t^{+}}  
<math> G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = \lim_{t_{\beta} \rightarrow t^{+}}  
\lim_{t_{\gamma} \rightarrow t'^{+}} G_{II} (\alpha t, \delta t', \beta t_{\beta}, \gamma t_{\gamma})
\lim_{t_{\gamma} \rightarrow t'^{+}} G_{II} (\alpha t, \delta t', \beta t_{\beta}, \gamma t_{\gamma})
= -\frac{i}{\hbar} </math>
= -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [a_{\beta}^{H+}(t) a_{\alpha}^{H}(t) a_{\gamma}^{H+} (t') a_{\delta}^{H} (t')] | \psi_{o}^{N} \rangle </math> (Eq. 1)


====Random Phase Approximation====
====Random Phase Approximation====


====RPA in Finite Systems and the Schematic Model====
====RPA in Finite Systems and the Schematic Model====

Revision as of 15:33, 4 December 2010

Polarization Propagator

To study excited states in meny-fermion systems, the limit of the two-particle (tp) propagator is used

(Eq. 1)

Random Phase Approximation

RPA in Finite Systems and the Schematic Model