Phy5670/RPA: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 6: Line 6:
\lim_{t_{\gamma} \rightarrow t'^{+}} G_{II} (\alpha t, \delta t', \beta t_{\beta}, \gamma t_{\gamma})
\lim_{t_{\gamma} \rightarrow t'^{+}} G_{II} (\alpha t, \delta t', \beta t_{\beta}, \gamma t_{\gamma})
= -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [a_{\beta}^{H+}(t) a_{\alpha}^{H}(t) a_{\gamma}^{H+} (t') a_{\delta}^{H} (t')] | \psi_{o}^{N} \rangle </math> (Eq. 1)
= -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [a_{\beta}^{H+}(t) a_{\alpha}^{H}(t) a_{\gamma}^{H+} (t') a_{\delta}^{H} (t')] | \psi_{o}^{N} \rangle </math> (Eq. 1)
where "ph" means "particle-hole pairs". Substituting the explicit form of the Heisenberg operators and inserting a complete set of N-particle state one has
<math> G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\beta}^{+}e^{-iHt/\hbar} e^{iHt/\hbar}a_{\alpha}e^{-iHt/\hbar}  e^{iHt'/\hbar}a_{\gamma}^{+}e^{-iHt'/\hbar} e^{iHt'/\hbar}a_{\delta}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle </math>
<math> = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\beta} a_{\alpha}e^{-iHt/\hbar} e^{iHt'/\hbar}a_{\gamma}^{+} a_{\delta}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle </math>
<math> = -\frac{i}{\hbar} \sum_{n}^{} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\beta} a_{\alpha}e^{-iHt/\hbar} | \psi_{n}^{N}\rangle \langle \psi_{n}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\delta}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle </math>
<math> = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\beta} a_{\alpha}e^{-iHt/\hbar} | \psi_{o}^{N}\rangle \langle \psi_{o}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\delta}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle
-\frac{i}{\hbar} \sum_{n \neq 0}^{} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\beta} a_{\alpha}e^{-iHt/\hbar} | \psi_{n}^{N}\rangle \langle \psi_{n}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\delta}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle</math>
<math> = -\frac{i}{\hbar} \langle \psi_{o}^{N} | a_{\beta}^{+} a_{\alpha} | \psi_{o}^{N} \rangle
\langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\delta} | \psi_{o}^{N} \rangle </math>
<math> - \frac{i}{\hbar} [ \sum_{n \neq 0}^{} \theta (t-t') e^{i(E_{o}^{N} - E_{n}^{N})(t-t')/\hbar} \langle \psi_{o}^{N} | a_{\beta}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\delta} | \psi_{o}^{N} \rangle
+ \sum_{n \neq 0}^{} \theta (t'-t) e^{i(E_{o}^{N} - E_{n}^{N})(t'-t)/\hbar} \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\delta} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\beta}^{+} a_{\alpha} | \psi_{o}^{N} \rangle ] </math> (Eq. 2)
where the definition of the time-ordering operator in terms of step functions is used also.


====Random Phase Approximation====
====Random Phase Approximation====


====RPA in Finite Systems and the Schematic Model====
====RPA in Finite Systems and the Schematic Model====

Revision as of 16:21, 4 December 2010

Polarization Propagator

To study excited states in meny-fermion systems, the limit of the two-particle (tp) propagator is used

(Eq. 1)

where "ph" means "particle-hole pairs". Substituting the explicit form of the Heisenberg operators and inserting a complete set of N-particle state one has

(Eq. 2)

where the definition of the time-ordering operator in terms of step functions is used also.

Random Phase Approximation

RPA in Finite Systems and the Schematic Model