Phy5670/RPA: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 30: Line 30:


<math> - \frac{i}{\hbar} [ \sum_{n \neq 0}^{} \theta (t-t') e^{i(E_{o}^{N} - E_{n}^{N})(t-t')/\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle  
<math> - \frac{i}{\hbar} [ \sum_{n \neq 0}^{} \theta (t-t') e^{i(E_{o}^{N} - E_{n}^{N})(t-t')/\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle  
+ \sum_{n \neq 0}^{} \theta (t'-t) e^{i(E_{o}^{N} - E_{n}^{N})(t'-t)/\hbar} \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle ]</math>
+ \sum_{n \neq 0}^{} \theta (t'-t) e^{i(E_{o}^{N} - E_{n}^{N})(t'-t)/\hbar} \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle ]</math> (Eq. 3)


By employing the integral formulation of the step function, that is,
By employing the integral formulation of the step function, that is,


<math> \theta (t-t_{o}) = \frac{-1}{2 \pi i} \int \frac{dE'}{E'+i \eta} e^{-iE'(t-t_{o})/\hbar} </math>
<math> \theta (t-t_{o}) = \frac{-1}{2 \pi i} \int \frac{dE'}{E'+i \eta} e^{-iE'(t-t_{o})/\hbar} </math>
one can transform the polarization propagator, Eq. (3), into its '''Lehmann representation''' as following:
(Let us calculate the first term in Eq. (3) first and let <math> \tau = t-t' </math>.)
<math> \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; E)
= \int \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; \tau) e^{iE \tau /\hbar} d \tau </math>
<math> = - \frac{i}{\hbar} \sum_{n \neq 0}^{} \int \theta (\tau) e^{i(E_{o}^{N} - E_{n}^{N})\tau/\hbar} e^{iE \tau /\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle </math>
<math> = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \int \frac{dE'}{E'+i \eta} e^{-iE' \tau /\hbar} e^{i(E_{o}^{N} - E_{n}^{N})\tau/\hbar} e^{iE \tau /\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle </math>
<math> = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \int \frac{dE'}{E'+i \eta} e^{-i(E'-E-(E_{o}^{N}-E_{n}^{N})) \tau/\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle </math>
<math> = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \frac{dE'}{E'+i \eta} 2 \pi \hbar \delta(E'-E-(E_{o}^{N}-E_{n}^{N})) d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle </math>
<math> = \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E+(E_{o}^{N}-E_{n}^{N})+i \eta} </math>
<math> = \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E-(E_{n}^{N}-E_{0}^{N})+i \eta} </math>
Similarly, the second term in Eq. (3) cab be Fourier transformed into this form:
<math> - \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle}{E+(E_{n}^{N}-E_{0}^{N})-i \eta} </math>
Hence we obtain the polarization propagator in Lehmann representation
<math> \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; E)
= \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E-(E_{n}^{N}-E_{0}^{N})+i \eta}
- \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle}{E+(E_{n}^{N}-E_{0}^{N})-i \eta} </math> (Eq. 4)
The polarization propagator incorporates the energy of excited states of N-particle system in its denominator, whereas its numerator contains the transition amplitudes connecting the ground state with those excited states.


====Random Phase Approximation====
====Random Phase Approximation====


====RPA in Finite Systems and the Schematic Model====
====RPA in Finite Systems and the Schematic Model====

Revision as of 17:16, 4 December 2010

Polarization Propagator

To study excited states in meny-fermion systems, the limit of the two-particle (tp) propagator is used

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = \lim_{t_{\beta} \rightarrow t^{+}} \lim_{t_{\gamma} \rightarrow t'^{+}} G_{II} (\alpha t, \bar{\delta} t', \bar{\beta} t_{\beta}, \gamma t_{\gamma}) = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [a_{\bar{\beta}}^{H+}(t) a_{\alpha}^{H}(t) a_{\gamma}^{H+} (t') a_{\bar{\delta}}^{H} (t')] | \psi_{o}^{N} \rangle } (Eq. 1)

where "ph" means "particle-hole pairs". Substituting the explicit form of the Heisenberg operators and inserting a complete set of N-particle state one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\bar{\beta}}^{+}e^{-iHt/\hbar} e^{iHt/\hbar}a_{\alpha}e^{-iHt/\hbar} e^{iHt'/\hbar}a_{\gamma}^{+}e^{-iHt'/\hbar} e^{iHt'/\hbar}a_{\bar{\delta}}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\bar{\beta}} a_{\alpha}e^{-iHt/\hbar} e^{iHt'/\hbar}a_{\gamma}^{+} a_{\bar{\delta}}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = -\frac{i}{\hbar} \sum_{n}^{} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\bar{\beta}} a_{\alpha}e^{-iHt/\hbar} | \psi_{n}^{N}\rangle \langle \psi_{n}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\bar{\delta}}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = -\frac{i}{\hbar} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\bar{\beta}} a_{\alpha}e^{-iHt/\hbar} | \psi_{o}^{N}\rangle \langle \psi_{o}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\bar{\delta}}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle -\frac{i}{\hbar} \sum_{n \neq 0}^{} \langle \psi_{o}^{N}| T [e^{iHt/\hbar}a_{\bar{\beta}} a_{\alpha}e^{-iHt/\hbar} | \psi_{n}^{N}\rangle \langle \psi_{n}^{N} | e^{iHt'/\hbar}a_{\gamma}^{+} a_{\bar{\delta}}e^{-iHt'/\hbar}] | \psi_{o}^{N} \rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = -\frac{i}{\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle - \frac{i}{\hbar} [ \sum_{n \neq 0}^{} \theta (t-t') e^{i(E_{o}^{N} - E_{n}^{N})(t-t')/\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle + \sum_{n \neq 0}^{} \theta (t'-t) e^{i(E_{o}^{N} - E_{n}^{N})(t'-t)/\hbar} \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle ] } (Eq. 2)

where the definition of the time-ordering operator in terms of step functions is used also. The so-called polarization propagator is defined by Eq. (2) which includes the excited states only:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') = G_{ph} (\alpha, \beta^{-1}; \gamma, \delta^{-1}; t-t') + \frac{i}{\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \frac{i}{\hbar} [ \sum_{n \neq 0}^{} \theta (t-t') e^{i(E_{o}^{N} - E_{n}^{N})(t-t')/\hbar} \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle + \sum_{n \neq 0}^{} \theta (t'-t) e^{i(E_{o}^{N} - E_{n}^{N})(t'-t)/\hbar} \langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle ]} (Eq. 3)

By employing the integral formulation of the step function, that is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta (t-t_{o}) = \frac{-1}{2 \pi i} \int \frac{dE'}{E'+i \eta} e^{-iE'(t-t_{o})/\hbar} }

one can transform the polarization propagator, Eq. (3), into its Lehmann representation as following: (Let us calculate the first term in Eq. (3) first and let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau = t-t' } .)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; E) = \int \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; \tau) e^{iE \tau /\hbar} d \tau }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = - \frac{i}{\hbar} \sum_{n \neq 0}^{} \int \theta (\tau) e^{i(E_{o}^{N} - E_{n}^{N})\tau/\hbar} e^{iE \tau /\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \int \frac{dE'}{E'+i \eta} e^{-iE' \tau /\hbar} e^{i(E_{o}^{N} - E_{n}^{N})\tau/\hbar} e^{iE \tau /\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \int \frac{dE'}{E'+i \eta} e^{-i(E'-E-(E_{o}^{N}-E_{n}^{N})) \tau/\hbar} d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{2 \pi \hbar} \sum_{n \neq 0}^{} \int \frac{dE'}{E'+i \eta} 2 \pi \hbar \delta(E'-E-(E_{o}^{N}-E_{n}^{N})) d \tau \langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E+(E_{o}^{N}-E_{n}^{N})+i \eta} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E-(E_{n}^{N}-E_{0}^{N})+i \eta} }

Similarly, the second term in Eq. (3) cab be Fourier transformed into this form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle}{E+(E_{n}^{N}-E_{0}^{N})-i \eta} }

Hence we obtain the polarization propagator in Lehmann representation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi (\alpha, \beta^{-1}; \gamma, \delta^{-1}; E) = \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{o}^{N} \rangle}{E-(E_{n}^{N}-E_{0}^{N})+i \eta} - \sum_{n \neq 0}^{} \frac{\langle \psi_{o}^{N} | a_{\gamma}^{+} a_{\bar{\delta}} | \psi_{n}^{N} \rangle \langle \psi_{n}^{N} | a_{\bar{\beta}}^{+} a_{\alpha} | \psi_{o}^{N} \rangle}{E+(E_{n}^{N}-E_{0}^{N})-i \eta} } (Eq. 4)

The polarization propagator incorporates the energy of excited states of N-particle system in its denominator, whereas its numerator contains the transition amplitudes connecting the ground state with those excited states.

Random Phase Approximation

RPA in Finite Systems and the Schematic Model