Solution to Set 3
Ferromagnetism
|
Given Information
- Classical Ising antiferromagnet on a ”bipartite” lattice given by Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \frac{J}{2} \sum_{<ij>} S_i S_j -− h\sum_i S_i } ,
- Magnetization for Lattice A:
- Magnetization for Lattice B:
- Average magnetization:
- "Staggered” magnetization:
(Note: It's the difference between the two sublattices)
- for perfect ferromagnetic order
- for perfect antiferromagnetic order
Part 1
Use Weiss mean-field decoupling to replace one of the spins in the Hamiltonian by its thermal average. The Weiss field experienced by a given spin is then proportional to the sublattice magnetization on the other sublattice. Write down self-consistent equations for and , and express them through the order parameters and .
The Weiss Molecular Field
Chapter 8.3.1 of Solid State Physics The systematic way of replacing the spin operator in the Heisenberg Hamiltonian by their average values in order to obtain the Weiss molecular field approximation is to insert and into Failed to parse (syntax error): {\displaystyle H = \frac{J}{2} \sum_{<ij>} S_i S_j -− h\sum_i S_i }
Part 2
Assume that , so that , and solve the mean-field equations by expanding in . Determine the Neel (ordering) temperature, and calculate the order-parameter exponent.
The Néel Temperature
Chapter 8.4 of Solid State Physics
where
- is Néel Temperature, the onset temperature for antiferromagnetism
- is Curie constant
Part 3
Now consider a small external field , so that both order parameters can assume a nonzero value (Note: will be small). By keeping only the leading terms in and , calculate the uniform spin susceptibility , as a function of temperature. Plot as a function of temperature, and show that it has a cusp around .
Part 4
Imagine adding a ”staggered” external field , which would be positive on sublattice A, but would be negative on sublattice B. Concentrate on the system with no uniform field , and determine the behavior of the staggered susceptibility . Show that blows up at the Neel temperature.