Oscillation Theorem: Difference between revisions
(New page: Let us concentrate on the bound states of a set of wavefunctions. Let <math> \frac{\hbar^2}{2m}=1</math>. Let <math>\psi_1\!</math> be an eigenstate with energy <math>E_1\!</math> and <mat...) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | |||
Let us concentrate on the bound states of a set of wavefunctions. Let <math> \frac{\hbar^2}{2m}=1</math>. Let <math>\psi_1\!</math> be an eigenstate with energy <math>E_1\!</math> and <math>\psi_2\!</math> an eigenstate with energy <math>E_2\!</math>, and <math>E_2>E_1\!</math>. We also can set boundary conditions, where both <math>\psi_1\!</math> and <math>\psi_2\!</math> vanish at <math>x_0\!</math>.This implies that | Let us concentrate on the bound states of a set of wavefunctions. Let <math> \frac{\hbar^2}{2m}=1</math>. Let <math>\psi_1\!</math> be an eigenstate with energy <math>E_1\!</math> and <math>\psi_2\!</math> an eigenstate with energy <math>E_2\!</math>, and <math>E_2>E_1\!</math>. We also can set boundary conditions, where both <math>\psi_1\!</math> and <math>\psi_2\!</math> vanish at <math>x_0\!</math>.This implies that | ||
:<math>-\psi_2\frac{\partial^2 \psi_1}{\partial x^2}+V(x)\psi_2\psi_1=E_1\psi_2\psi_1\!</math> | :<math>-\psi_2\frac{\partial^2 \psi_1}{\partial x^2}+V(x)\psi_2\psi_1=E_1\psi_2\psi_1\!</math> |
Revision as of 16:30, 31 August 2011
Let us concentrate on the bound states of a set of wavefunctions. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\hbar^2}{2m}=1} . Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} be an eigenstate with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} an eigenstate with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2\!} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2>E_1\!} . We also can set boundary conditions, where both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} vanish at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} .This implies that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\psi_2\frac{\partial^2 \psi_1}{\partial x^2}+V(x)\psi_2\psi_1=E_1\psi_2\psi_1\!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\psi_1\frac{\partial^2 \psi_2}{\partial x^2}+V(x)\psi_1\psi_2=E_2\psi_1\psi_2\!}
Subtracting the second of these from the first and simplifying, we see that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial}{\partial x}\left(-\psi_2\frac{\partial \psi_1}{\partial x}+\psi_1\frac{\partial \psi_2}{\partial x}\right)=\left(E_1-E_2\right)\psi_1\psi_2\!}
If we now integrate both sides of this equation from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} to any position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\!} and simplify, we see that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\psi_2(x')\frac{\partial \psi_1(x')}{\partial x}+\psi_1(x')\frac{\partial \psi_2(x')}{\partial x}=(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2dx\!}
The key is to now let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\!} be the first position to the right of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} vanishes.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\psi_2(x')\frac{\partial \psi_1(x')}{\partial x}=(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2dx\!\!}
Now, if we assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} does not vanish at or between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} , then it is easy to see that the left hand side of the previous equation has a different sign from that of the right hand side, and thus it must be true that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} must vanish at least once between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2>E_1\!} .