Stationary States: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
which is independent of time. Hence, the name is "stationary state". | which is independent of time. Hence, the name is "stationary state". | ||
The Schrödinger equation now becomes | The Schrödinger equation now becomes | ||
Line 26: | Line 21: | ||
which is an eigenvalue equation with eigenfunction <math>\psi(\textbf{r})</math> and eigenvalue <math>E\!</math>. This equation is known as the time-independent Schrödinger equation. | which is an eigenvalue equation with eigenfunction <math>\psi(\textbf{r})</math> and eigenvalue <math>E\!</math>. This equation is known as the time-independent Schrödinger equation. | ||
Something similar happens when calculating the expectation value of any dynamical variable. | |||
For any time-independent operator <math>Q(x,p),</math> | |||
:<math> \langle Q(x,p)\rangle = \int \psi^{\ast}(x) Q\left(x,\frac{\hbar}{i} \frac{d}{dx}\right) \psi(x)\,dx </math> | |||
==Problem== | ==Problem== |
Revision as of 10:42, 17 April 2013
Stationary states are the energy eigenstates of the Hamiltonian operator. These states are called "stationary" because their probability distributions are independent of time.
For a conservative system with a time independent potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\textbf{r})} , the Schrödinger equation takes the form:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial \Psi(\textbf{r},t)}{\partial t} = \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\Psi(\textbf{r},t)}
Since the potential and the Hamiltonian do not depend on time, solutions to this equation can be written as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(\textbf{r},t)=e^{-iEt/\hbar}\psi(\textbf{r})} .
Obviously, for such state the probability density is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi(\textbf{r},t)|^2=|\psi(\textbf{r})|^2}
which is independent of time. Hence, the name is "stationary state".
The Schrödinger equation now becomes
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ -\frac{\hbar^2}{2m}\nabla^2 + V(\textbf{r})\right]\psi(\textbf{r})=E\psi(\textbf{r})}
which is an eigenvalue equation with eigenfunction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\textbf{r})} and eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E\!} . This equation is known as the time-independent Schrödinger equation.
Something similar happens when calculating the expectation value of any dynamical variable.
For any time-independent operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(x,p),}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle Q(x,p)\rangle = \int \psi^{\ast}(x) Q\left(x,\frac{\hbar}{i} \frac{d}{dx}\right) \psi(x)\,dx }
Problem
The time-independent Schrodinger equation for a free particle is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2m} \left( \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{r}} \right)^2 \psi \left(\mathbf{r} \right) = E \psi\left(\mathbf{r} \right) }
Typically, one lets Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = \frac{\hbar^2 k^2}{2m} \!} to simplify the equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \nabla^2 + k^2 \right) \psi \left( \mathbf{r} \right) = 0. }
Show that (a) a plane wave Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\left(\mathbf{r} \right) = e^{ikz} \!} , and (b) a spherical wave Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\left(\mathbf{r} \right) = \frac{e^{ikr}}{r} \! } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \sqrt{x^2 + y^2 + z^2} \! } , satisfy the equation. (In either case, the wave length of the solution is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda = \frac{2\pi}{k} \!} and the momentum by de Broglie's relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = \hbar k \! } . )
A sample problem: Free Particle SE Problem.