Time Evolution of Expectation Values and Ehrenfest's Theorem: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
<math>\frac{d\langle\hat{O}(t)\rangle}{dt}=\frac{i}{\hbar}\langle\Psi(t)|\hat{H}(t)\hat{O}(t)|\Psi(t)\rangle-\frac{i}{\hbar}\langle\Psi(t)|\hat{O}(t)\hat{H}(t)|\Psi(t)\rangle+\langle\frac{d\hat{O}(t)}{dt}\rangle</math> | <math>\frac{d\langle\hat{O}(t)\rangle}{dt}=\frac{i}{\hbar}\langle\Psi(t)|\hat{H}(t)\hat{O}(t)|\Psi(t)\rangle-\frac{i}{\hbar}\langle\Psi(t)|\hat{O}(t)\hat{H}(t)|\Psi(t)\rangle+\langle\frac{d\hat{O}(t)}{dt}\rangle</math> | ||
<math>=\frac{i}{\hbar}\langle | <math>=\frac{i}{\hbar}\langle[\hat{H}(t),\hat{O}(t)]\rangle+\langle\frac{d\hat{O}(t)}{dt}\rangle.</math> | ||
This formula is of the utmost importance in all facets of quantum mechanics. | This formula is of the utmost importance in all facets of quantum mechanics. |
Revision as of 16:16, 25 July 2013
Time Evolution of Expecation Values
Having described in the previous section how the state vector of a system evolves in time, we may now derive a formula for the time evolution of the expectation value of an operator. Given an operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{O}(t),} we know that its expectation value is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\hat{O}(t)\rangle=\langle\Psi(t)|\hat{O}(t)|\Psi(t)\rangle.} If we take the time derivative of this expectation value, we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\langle\hat{O}(t)\rangle}{dt}=\left [\frac{d}{dt}\langle\Psi(t)|\right ]\hat{O}(t)|\Psi(t)\rangle+\langle\Psi(t)|\frac{d\hat{O}(t)}{dt}|\Psi(t)\rangle+\langle\Psi(t)|\hat{O}(t)\left [\frac{d}{dt}|\Psi(t)\rangle\right ]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\left [\frac{d}{dt}\langle\Psi(t)|\right ]\hat{O}(t)|\Psi(t)\rangle+\langle\Psi(t)|\hat{O}(t)\left [\frac{d}{dt}|\Psi(t)\rangle\right ]+\langle\frac{d\hat{O}(t)}{dt}\rangle.}
We now use the Schrödinger equation and its dual to write this as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\langle\hat{O}(t)\rangle}{dt}=\frac{i}{\hbar}\langle\Psi(t)|\hat{H}(t)\hat{O}(t)|\Psi(t)\rangle-\frac{i}{\hbar}\langle\Psi(t)|\hat{O}(t)\hat{H}(t)|\Psi(t)\rangle+\langle\frac{d\hat{O}(t)}{dt}\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{i}{\hbar}\langle[\hat{H}(t),\hat{O}(t)]\rangle+\langle\frac{d\hat{O}(t)}{dt}\rangle.}
This formula is of the utmost importance in all facets of quantum mechanics.