Oscillation Theorem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Let us concentrate on the bound states of a set of wavefunctions. Let <math> \frac{\hbar^2}{2m}=1</math>. Let <math>\psi_1\!</math> be an eigenstate with energy <math>E_1\!</math> and <mat...)
 
No edit summary
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Let us concentrate on the bound states of a set of wavefunctions. Let <math> \frac{\hbar^2}{2m}=1</math>. Let <math>\psi_1\!</math> be an eigenstate with energy <math>E_1\!</math> and <math>\psi_2\!</math> an eigenstate with energy <math>E_2\!</math>, and <math>E_2>E_1\!</math>. We also can set boundary conditions, where both <math>\psi_1\!</math> and <math>\psi_2\!</math> vanish at <math>x_0\!</math>.This implies that
{{Quantum Mechanics A}}
:<math>-\psi_2\frac{\partial^2 \psi_1}{\partial x^2}+V(x)\psi_2\psi_1=E_1\psi_2\psi_1\!</math>
Let <math>\psi_1\!</math> be a bound state of a given potential with energy <math>E_1\!</math> and <math>\psi_2\!</math> be another bound state with energy <math>E_2\!</math> such that <math>E_2>E_1\!</math>. Let <math>x_0\!</math> be a point at which both <math>\psi_1\!</math> and <math>\psi_2\!</math> vanish; this is guaranteed to happen at least for <math>x_0\to\pm\infty.\!</math>  We will now prove that, between any two points <math>x_0\!</math> and <math>x_1\!</math> at which <math>\psi_1\!</math> vanishes, there must be at least one point at which <math>\psi_2\!</math> vanishes. Let us begin by writing down the Schrödinger equation for each wave function:
:<math>-\psi_1\frac{\partial^2 \psi_2}{\partial x^2}+V(x)\psi_1\psi_2=E_2\psi_1\psi_2\!</math>
:<math>-\frac{\hbar^2}{2m}\frac{d^2 \psi_1}{dx^2}+V(x)\psi_1=E_1\psi_1\!</math>
:<math>-\frac{\hbar^2}{2m}\frac{d^2 \psi_2}{dx^2}+V(x)\psi_2=E_2\psi_2\!</math>


Subtracting the second of these from the first and simplifying, we see that
Multiplying the first equation by <math>\psi_2\!</math> and the second by <math>\psi_1,\!</math> subtracting the second equation from the first, and simplifying, we see that
:<math>\frac{\partial}{\partial x}\left(-\psi_2\frac{\partial \psi_1}{\partial x}+\psi_1\frac{\partial \psi_2}{\partial x}\right)=\left(E_1-E_2\right)\psi_1\psi_2\!</math>
:<math>\frac{d}{dx}\left(-\psi_2\frac{d\psi_1}{dx}+\psi_1\frac{d\psi_2}{dx}\right)=\frac{2m}{\hbar^2}\left(E_1-E_2\right)\psi_1\psi_2.\!</math>


If we now integrate both sides of this equation from <math>x_0\!</math> to any position <math>x'\!</math> and simplify, we see that
If we now integrate both sides of this equation from <math>x_0\!</math> to any position <math>x'\!</math> and simplify, we see that
:<math>-\psi_2(x')\frac{\partial \psi_1(x')}{\partial x}+\psi_1(x')\frac{\partial \psi_2(x')}{\partial x}=(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2dx\!</math>


The key is to now let <math>x'\!</math> be the first position to the right of <math>x_0\!</math> where <math>\psi_1\!</math> vanishes.
:<math>-\psi_2(x')\frac{d\psi_1(x')}{dx}+\psi_1(x')\frac{d\psi_2(x')}{dx}=\frac{2m}{\hbar^2}(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2\,dx\!</math>
:<math>-\psi_2(x')\frac{\partial \psi_1(x')}{\partial x}=(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2dx\!\!</math>
 
The key is to now let <math>x'=x_1\!</math> be the first position to the right of <math>x_0\!</math> where <math>\psi_1\!</math> vanishes.
:<math>\psi_2(x_1)\frac{d\psi_1(x_1)}{dx}=\frac{2m}{\hbar^2}(E_2-E_1)\int_{x_0}^{x_1}\psi_1\psi_2\,dx\!</math>
   
   
Now, if we assume that <math>\psi_2\!</math> does not vanish at or between <math>x'\!</math> and <math>x_0\!</math>, then it is easy to see that the left hand side of the previous equation has a different sign from that of the right hand side, and thus it must be true that <math>\psi_2\!</math> must vanish at least once between <math>x'\!</math> and <math>x_0\!</math> if <math>E_2>E_1\!</math>.
Now, if we assume that <math>\psi_2\!</math> does not vanish at or between <math>x_0\!</math> and <math>x_1\!</math>, then it is easy to see that the left hand side of the previous equation has a different sign from that of the right hand side, and thus it must be true that <math>\psi_2\!</math> must vanish at least once between <math>x_0\!</math> and <math>x_1\!</math> if <math>E_2>E_1.\!</math>

Latest revision as of 16:17, 6 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , it describes how a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} be a bound state of a given potential with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} be another bound state with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2\!} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2>E_1\!} . Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} be a point at which both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} vanish; this is guaranteed to happen at least for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\to\pm\infty.\!} We will now prove that, between any two points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\!} at which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} vanishes, there must be at least one point at which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} vanishes. Let us begin by writing down the Schrödinger equation for each wave function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2 \psi_1}{dx^2}+V(x)\psi_1=E_1\psi_1\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2 \psi_2}{dx^2}+V(x)\psi_2=E_2\psi_2\!}

Multiplying the first equation by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} and the second by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1,\!} subtracting the second equation from the first, and simplifying, we see that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left(-\psi_2\frac{d\psi_1}{dx}+\psi_1\frac{d\psi_2}{dx}\right)=\frac{2m}{\hbar^2}\left(E_1-E_2\right)\psi_1\psi_2.\!}

If we now integrate both sides of this equation from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} to any position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'\!} and simplify, we see that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\psi_2(x')\frac{d\psi_1(x')}{dx}+\psi_1(x')\frac{d\psi_2(x')}{dx}=\frac{2m}{\hbar^2}(E_1-E_2)\int_{x_0}^{x'}\psi_1\psi_2\,dx\!}

The key is to now let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'=x_1\!} be the first position to the right of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1\!} vanishes.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2(x_1)\frac{d\psi_1(x_1)}{dx}=\frac{2m}{\hbar^2}(E_2-E_1)\int_{x_0}^{x_1}\psi_1\psi_2\,dx\!}

Now, if we assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} does not vanish at or between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\!} , then it is easy to see that the left hand side of the previous equation has a different sign from that of the right hand side, and thus it must be true that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2\!} must vanish at least once between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\!} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_2>E_1.\!}