Harmonic Oscillator: Integration Over Fluctuations: Difference between revisions
m (moved Harmonic fluctuations to Harmonic Fluctuations: Correct capitalization of title) |
|
(No difference)
|
Revision as of 10:49, 16 August 2013
Now, let's evaluate the path integral:
Note that the integrand is taken over all possible trajectory starting at point at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'=0} , ending at point at time .
Expanding this integral,
where .
Expanding the path trajectory in Fourier series, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t')=\sum_n a_n \sin\left(\frac{n\pi t'}{t}\right) }
we may express Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)\!} in the form
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C\int_{-\infty}^{\infty} da_1\ldots da_{N-1} \exp{\left[\sum_{n=1}^{N-1}\frac{im}{2\hbar}\left(\left(\frac{n\pi}{t}\right)^2- \omega^2\right)a^2_n\right]} }
where C is a constant independent of the frequency which comes from the Jacobian of the transformation. The important point is that it does not depend on the frequency Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\!} . Thus, evaluating the integral of,
where C' is a constant directly related to C and still independent of the frequency of motion. Since the first product series in this final expression is also independent of the frequency of motion, we can absorb it into our constant C' to have a new constant, C. Simplifying further,
In the limit , we already know that
Thus,
and
Reference
For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.