Commutation Relations: Difference between revisions
No edit summary |
No edit summary |
||
Line 55: | Line 55: | ||
</math> | </math> | ||
Also, note that for <math>\hat{L}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},</math> | Also, note that for <math>\hat{mathbf{L}}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},</math> | ||
:<math> | :<math> | ||
Line 67: | Line 67: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement. |
Latest revision as of 23:26, 18 August 2013
In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathbf{L}}=\hat{\mathbf{r}}\times\hat{\mathbf{p}}}
Working in the position representation, this becomes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathbf{L}}=\mathbf{r}\times\frac{\hbar}{i}\nabla.}
Evaluating the cross product in the Cartesian coordinate system, we get a component of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{L}\!} in each direction; for example,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_x=\hat{y}\hat{p}_z-\hat{z}\hat{p}_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right),}
and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_{\mu}=\epsilon_{\mu\nu\lambda}\hat{r}_\nu\hat{p}_\lambda,}
where
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_{\mu\nu\lambda} = \begin{cases} +1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\ -1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\ 0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu \end{cases} }
and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations).
We can immediately verify the following commutation relations:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{L}_\mu,\hat{x}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{L}_\mu,\hat{p}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{p}_\lambda}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{L}_\mu,\hat{L}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{L}_\lambda}
The last relation may also be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}.}
Furthermore,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{r}}]=i\hbar(\hat{\mathbf{r}}\times\hat{\mathbf{n}})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{p}}]=i\hbar(\hat{\mathbf{p}}\times\hat{\mathbf{n}})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{L}}]=i\hbar(\hat{\mathbf{L}}\times\hat{\mathbf{n}})}
For example,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\hat{L}_\mu,\hat{x}_\nu\right] &= [\epsilon_{\mu\lambda\rho}\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}[\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}\hat{x}_\lambda[\hat{p}_\rho,\hat{x}_\nu] \\ &= \epsilon_{\mu\lambda\rho}\hat{x}_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}\hat{x}_\lambda\frac{\hbar}{i} \\ &= i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda. \end{align} }
Also, note that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{mathbf{L}}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\hat{L}_{\mu},\hat{L}^2\right] &= \left[\hat{L}_{\mu},\hat{L}_{\nu}\hat{L}_{\nu}\right] \\ &= \hat{L}_{\nu}\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]+\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]\hat{L}_{\nu} \\ &= \hat{L}_{\nu} i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} \hat{L}_{\nu} \\ &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu}\hat{L}_{\lambda}\hat{L}_{\nu} \\ &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda}\hat{L}_{\nu}\hat{L}_{\lambda} \\ &= 0. \end{align} }
Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement.