Spherical Coordinates: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components. | We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components. | ||
The Cartesian coordinates <math>x,\!</math <math>y,\!</math> and <math>z\!</math> can be written in terms of the spherical coordinates <math>r,\!</math> <math>\theta,\!</math> and <math>\phi\!</math> as follows: | The Cartesian coordinates <math>x,\!</math> <math>y,\!</math> and <math>z\!</math> can be written in terms of the spherical coordinates <math>r,\!</math> <math>\theta,\!</math> and <math>\phi\!</math> as follows: | ||
<math>x=r\sin\theta\cos\phi,\!</math> <math>y=r\sin\theta\sin\phi,\!</math> <math>z=r\cos\theta\!</math> | <math>x=r\sin\theta\cos\phi,\!</math> <math>y=r\sin\theta\sin\phi,\!</math> <math>z=r\cos\theta\!</math> | ||
Let us start with the <math>x\!</math> component of the angular momentum, <math>\hat{L}_x.</math> In Cartesian coordinates, this is | |||
<math>\hat{L}_x=-i\hbar\left (y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right ).</math> | |||
If we make use of the chain rule, then we obtain | |||
<math>\hat{L}_{x} = -i\hbar\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right).</math> | |||
<math> | Similarly, the <math>y\!</math> and <math>z\!</math> components may be found to be | ||
<math>\hat{L}_{y} = -i\hbar\left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math> | |||
and | |||
<math>\hat{L}_{z} = -i\hbar\frac{\partial}{\partial \phi}.</math> | |||
==Problem== | ==Problem== |
Revision as of 22:25, 28 August 2013
We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components.
The Cartesian coordinates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y,\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\!} can be written in terms of the spherical coordinates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta,\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\!} as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\sin\theta\cos\phi,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=r\sin\theta\sin\phi,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=r\cos\theta\!}
Let us start with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\!} component of the angular momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_x.} In Cartesian coordinates, this is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_x=-i\hbar\left (y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right ).}
If we make use of the chain rule, then we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_{x} = -i\hbar\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right).}
Similarly, the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\!} components may be found to be
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_{y} = -i\hbar\left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_{z} = -i\hbar\frac{\partial}{\partial \phi}.}
Problem
(Richard L. Liboff, Introductory Quantum Mechanics, 2nd Edition, pp. 377-379)
Show, using the above results, that the operator,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta\phi}=\exp \left (\frac{i}{\hbar}\Delta\phi\hat{L}_z\right ),}
when applied to a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\phi)\!} of the azimuthal angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi,\!} rotates the angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\!} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi+\Delta\phi.} That is, show that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta\phi}f(\phi)=f(\phi+\Delta\phi).}