Free Particle in Spherical Coordinates: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0\!</math>. So it's more useful to consider a particle moving in a uniform p...)
 
No edit summary
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0\!</math>.  So it's more useful to consider a particle moving in a uniform potential. The Schrodinger equation for the radial part of the wave function is:
{{Quantum Mechanics A}}
A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0,</math> so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well.  The [[Schrödinger Equation|Schrödinger equation]] for the radial part of the wave function is


:<math>\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l(r)=Eu_l(r)</math>
<math>\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l=Eu_l.</math>
let <math>k^2=\frac{2m}{\hbar^2}|E-V|</math>. Rearranging the equation gives
:<math>\left(-\frac{\partial^2}{\partial r^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l(r)=0</math>
Letting <math>\rho=kr\!</math> gives the terms that <math>\frac{1}{r^{2}}=\frac{k^{2}}{\rho ^{2}}</math> and <math>\frac{\partial ^{2}}{\partial r^{2}}=k^{2}\frac{\partial ^{2}}{\partial \rho ^{2}}</math>. Then the equation becomes:
:<math>\left(-\frac{\partial^2}{\partial\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho)</math>
where <math>d_l\!</math> and <math>d_l^{\dagger}\!</math> become the raising and lowering operators:


:<math>d_l=\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}, </math>
Let <math>k^2=\frac{2m}{\hbar^2}|E-V|.</math> Rearranging the equation gives us
:<math>d_l^\dagger=-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}</math>
Being <math>d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger}</math>, it can be shown that
:<math>d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho)</math>
For <math>\ell =0</math>,  <math>-\frac{\partial^2}{\partial \rho^2} u_0(\rho)=u_0(\rho)</math>, gives the solution as:
:<math>u_0(\rho)=A\sin(\rho)-B\cos(\rho)\!</math>
The raising operator can be applied to the ground state in order to find high orders of <math>\ u_0(\rho)</math>;
:<math>d_0^\dagger u_0(\rho)=\left(-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}\right)u_0(\rho)=c_0 u_1(\rho)</math>
By this way, we can get the general expression:
:<math>f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho)</math>,
where <math> j_l(\rho) \!</math> is spherical Bessel function and <math> n_l(\rho) \! </math> is spherical Neumann function.


<math>\left(-\frac{d^2}{dr^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l=0.</math>


==Explicit Forms of the Spherical Bessel and Neumann Functions==
If we now let <math>\rho=kr,\!</math> then the equation reduces to the dimensionless form,


:<math> j_0(z) = \frac{\sin(z)}{z} </math>
<math>\left(-\frac{d^2}{d\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho),</math>
:<math> j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} </math>
:<math> j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) </math>


:<math> n_0(z) = -\frac{\cos(z)}{z} </math>
where <math>d_l\!</math> and <math>d_l^{\dagger}\!</math> are the raising and lowering operators,
:<math> n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} </math>
:<math> n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) </math>


The spherical Hankel functions of the first and second kind can be written in terms of the spherical Bessel and spherical Neumann functions, and are defined by:
<math>d_l=\frac{d}{d\rho}+\frac{l+1}{\rho}</math>


:<math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math>
and
 
<math>d_l^\dagger=-\frac{d}{d\rho}+\frac{l+1}{\rho}.</math>
 
Because <math>d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger},</math> it follows that
<math>d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho).</math>
 
For <math>l=0,</math>
 
<math>-\frac{d^2}{d\rho^2} u_0(\rho)=u_0(\rho),</math>
 
whose solution is
 
<math>u_0(\rho)=A\sin{\rho}-B\cos{\rho}.\!</math>
 
The raising operator may now be applied to this state in order to find the solutions for higher values of <math>l.\!</math>  By repeated application of this operator, we obtain the wave function for all values of <math>l:\!</math>
 
<math>f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho),</math>
 
where <math> j_l(\rho) \!</math> is a spherical Bessel function and <math> n_l(\rho) \! </math> is a spherical Neumann function, or spherical Bessel functions of the [http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalBesselFunctionoftheSecondKind.html second] kinds, respectively.
 
==Properties of the Spherical Bessel and Neumann Functions==
 
Explicit forms of the first few spherical Bessel and Neumann functions:
 
<math> j_0(z) = \frac{\sin(z)}{z} </math>
<math> j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} </math>
<math> j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) </math>
 
<math> n_0(z) = -\frac{\cos(z)}{z} </math>
<math> n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} </math>
<math> n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) </math>
 
We may also define spherical Hankel functions of the [http://mathworld.wolfram.com/SphericalHankelFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalHankelFunctionoftheSecondKind.html second] kind in terms of the spherical Bessel and Neumann functions:
 
<math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math>


and
and


:<math> h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) </math>
<math> h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) </math>




The asymptotic form of the spherical Bessel and Neumann functions (as z <math> \rightarrow</math> large) are given by:
The asymptotic forms of the spherical Bessel and Neumann functions as <math>z\rightarrow\infty</math> are


:<math> j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} </math>
<math> j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} </math>


and  
and  


:<math> n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z} </math>
<math> n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z}. </math>
 
The first few zeros of the spherical Bessel function for <math>l=0\!</math> and <math>l=1\!</math> are


The first few zeros of the spherical Bessel function:
<math> l = 0: 3.142, 6.283, 9.425, 12.566, \ldots </math>


:<math> \ell = 0: 3.142, 6.283, 9.425, 12.566 </math>
and


:<math> \ell = 1: 4.493, 7.725, 10.904, 14.066 </math>
<math> l = 1: 4.493, 7.725, 10.904, 14.066, \ldots</math>


The derivatives of the spherical Bessel and Neumann functions are defined by:
The derivatives of the spherical Bessel and Neumann functions are given by


:<math> j'_{\ell}(z) = \frac{\ell}{z}j_{\ell}(z) - j_{\ell+1}(z) </math>
<math> j'_{l}(z) = \frac{l}{z}j_{l}(z) - j_{l+1}(z) </math>


and  
and  


:<math> n'_{\ell}(z) = \frac{\ell}{z}n_{\ell}(z) - n_{\ell+1}(z) </math>
<math> n'_{l}(z) = \frac{l}{z}n_{l}(z) - n_{l+1}(z). </math>

Latest revision as of 23:39, 31 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

A free particle is a specific case when of the motion in a uniform potential so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well. The Schrödinger equation for the radial part of the wave function is

Let Rearranging the equation gives us

If we now let then the equation reduces to the dimensionless form,

where and are the raising and lowering operators,

and

Because it follows that

For

whose solution is

The raising operator may now be applied to this state in order to find the solutions for higher values of By repeated application of this operator, we obtain the wave function for all values of

where is a spherical Bessel function and is a spherical Neumann function, or spherical Bessel functions of the first and second kinds, respectively.

Properties of the Spherical Bessel and Neumann Functions

Explicit forms of the first few spherical Bessel and Neumann functions:

We may also define spherical Hankel functions of the first and second kind in terms of the spherical Bessel and Neumann functions:

and


The asymptotic forms of the spherical Bessel and Neumann functions as are

and

The first few zeros of the spherical Bessel function for and are

and

The derivatives of the spherical Bessel and Neumann functions are given by

and