|
|
(6 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0\!</math>. So it's more useful to consider a particle moving in a uniform potential. The [[Schrödinger equation]] for the radial part of the wave function is: | | {{Quantum Mechanics A}} |
| | A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0,</math> so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well. The [[Schrödinger Equation|Schrödinger equation]] for the radial part of the wave function is |
|
| |
|
| :<math>\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l(r)=Eu_l(r)</math>
| | <math>\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l=Eu_l.</math> |
| let <math>k^2=\frac{2m}{\hbar^2}|E-V|</math>. Rearranging the equation gives
| |
| :<math>\left(-\frac{\partial^2}{\partial r^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l(r)=0</math>
| |
| Letting <math>\rho=kr\!</math> gives the terms that <math>\frac{1}{r^{2}}=\frac{k^{2}}{\rho ^{2}}</math> and <math>\frac{\partial ^{2}}{\partial r^{2}}=k^{2}\frac{\partial ^{2}}{\partial \rho ^{2}}</math>. Then the equation becomes:
| |
| :<math>\left(-\frac{\partial^2}{\partial\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho)</math>
| |
| where <math>d_l\!</math> and <math>d_l^{\dagger}\!</math> become the raising and lowering operators:
| |
|
| |
|
| :<math>d_l=\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}, </math>
| | Let <math>k^2=\frac{2m}{\hbar^2}|E-V|.</math> Rearranging the equation gives us |
| :<math>d_l^\dagger=-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}</math>
| |
| Being <math>d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger}</math>, it can be shown that
| |
| :<math>d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho)</math>
| |
| For <math>\ell =0</math>, <math>-\frac{\partial^2}{\partial \rho^2} u_0(\rho)=u_0(\rho)</math>, gives the solution as:
| |
| :<math>u_0(\rho)=A\sin(\rho)-B\cos(\rho)\!</math>
| |
| The raising operator can be applied to the ground state in order to find high orders of <math>\ u_0(\rho)</math>;
| |
| :<math>d_0^\dagger u_0(\rho)=\left(-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}\right)u_0(\rho)=c_0 u_1(\rho)</math>
| |
| By this way, we can get the general expression:
| |
| :<math>f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho)</math>,
| |
| where <math> j_l(\rho) \!</math> is spherical Bessel function and <math> n_l(\rho) \! </math> is spherical Neumann function.
| |
|
| |
|
| | <math>\left(-\frac{d^2}{dr^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l=0.</math> |
|
| |
|
| ==Explicit Forms of the Spherical Bessel and Neumann Functions== | | If we now let <math>\rho=kr,\!</math> then the equation reduces to the dimensionless form, |
|
| |
|
| :<math> j_0(z) = \frac{\sin(z)}{z} </math>
| | <math>\left(-\frac{d^2}{d\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho),</math> |
| :<math> j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} </math>
| |
| :<math> j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) </math>
| |
|
| |
|
| :<math> n_0(z) = -\frac{\cos(z)}{z} </math>
| | where <math>d_l\!</math> and <math>d_l^{\dagger}\!</math> are the raising and lowering operators, |
| :<math> n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} </math>
| |
| :<math> n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) </math>
| |
|
| |
|
| The spherical Hankel functions of the first and second kind can be written in terms of the spherical Bessel and spherical Neumann functions, and are defined by:
| | <math>d_l=\frac{d}{d\rho}+\frac{l+1}{\rho}</math> |
|
| |
|
| :<math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math> | | and |
| | |
| | <math>d_l^\dagger=-\frac{d}{d\rho}+\frac{l+1}{\rho}.</math> |
| | |
| | Because <math>d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger},</math> it follows that |
| | |
| | <math>d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho).</math> |
| | |
| | For <math>l=0,</math> |
| | |
| | <math>-\frac{d^2}{d\rho^2} u_0(\rho)=u_0(\rho),</math> |
| | |
| | whose solution is |
| | |
| | <math>u_0(\rho)=A\sin{\rho}-B\cos{\rho}.\!</math> |
| | |
| | The raising operator may now be applied to this state in order to find the solutions for higher values of <math>l.\!</math> By repeated application of this operator, we obtain the wave function for all values of <math>l:\!</math> |
| | |
| | <math>f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho),</math> |
| | |
| | where <math> j_l(\rho) \!</math> is a spherical Bessel function and <math> n_l(\rho) \! </math> is a spherical Neumann function, or spherical Bessel functions of the [http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalBesselFunctionoftheSecondKind.html second] kinds, respectively. |
| | |
| | ==Properties of the Spherical Bessel and Neumann Functions== |
| | |
| | Explicit forms of the first few spherical Bessel and Neumann functions: |
| | |
| | <math> j_0(z) = \frac{\sin(z)}{z} </math> |
| | <math> j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} </math> |
| | <math> j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) </math> |
| | |
| | <math> n_0(z) = -\frac{\cos(z)}{z} </math> |
| | <math> n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} </math> |
| | <math> n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) </math> |
| | |
| | We may also define spherical Hankel functions of the [http://mathworld.wolfram.com/SphericalHankelFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalHankelFunctionoftheSecondKind.html second] kind in terms of the spherical Bessel and Neumann functions: |
| | |
| | <math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math> |
|
| |
|
| and | | and |
|
| |
|
| :<math> h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) </math>
| | <math> h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) </math> |
|
| |
|
|
| |
|
| The asymptotic form of the spherical Bessel and Neumann functions (as z <math> \rightarrow</math> large) are given by: | | The asymptotic forms of the spherical Bessel and Neumann functions as <math>z\rightarrow\infty</math> are |
|
| |
|
| :<math> j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} </math>
| | <math> j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} </math> |
|
| |
|
| and | | and |
|
| |
|
| :<math> n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z} </math>
| | <math> n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z}. </math> |
| | |
| | The first few zeros of the spherical Bessel function for <math>l=0\!</math> and <math>l=1\!</math> are |
|
| |
|
| The first few zeros of the spherical Bessel function:
| | <math> l = 0: 3.142, 6.283, 9.425, 12.566, \ldots </math> |
|
| |
|
| :<math> \ell = 0: 3.142, 6.283, 9.425, 12.566 </math>
| | and |
|
| |
|
| :<math> \ell = 1: 4.493, 7.725, 10.904, 14.066 </math>
| | <math> l = 1: 4.493, 7.725, 10.904, 14.066, \ldots</math> |
|
| |
|
| The derivatives of the spherical Bessel and Neumann functions are defined by: | | The derivatives of the spherical Bessel and Neumann functions are given by |
|
| |
|
| :<math> j'_{\ell}(z) = \frac{\ell}{z}j_{\ell}(z) - j_{\ell+1}(z) </math>
| | <math> j'_{l}(z) = \frac{l}{z}j_{l}(z) - j_{l+1}(z) </math> |
|
| |
|
| and | | and |
|
| |
|
| :<math> n'_{\ell}(z) = \frac{\ell}{z}n_{\ell}(z) - n_{\ell+1}(z) </math>
| | <math> n'_{l}(z) = \frac{l}{z}n_{l}(z) - n_{l+1}(z). </math> |
A free particle is a specific case when
of the motion in a uniform potential
so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well. The Schrödinger equation for the radial part of the wave function is
Let
Rearranging the equation gives us
If we now let
then the equation reduces to the dimensionless form,
where
and
are the raising and lowering operators,
and
Because
it follows that
For
whose solution is
The raising operator may now be applied to this state in order to find the solutions for higher values of
By repeated application of this operator, we obtain the wave function for all values of
where
is a spherical Bessel function and
is a spherical Neumann function, or spherical Bessel functions of the first and second kinds, respectively.
Properties of the Spherical Bessel and Neumann Functions
Explicit forms of the first few spherical Bessel and Neumann functions:
We may also define spherical Hankel functions of the first and second kind in terms of the spherical Bessel and Neumann functions:
and
The asymptotic forms of the spherical Bessel and Neumann functions as
are
and
The first few zeros of the spherical Bessel function for
and
are
and
The derivatives of the spherical Bessel and Neumann functions are given by
and