The Dirac Delta Function Potential: Difference between revisions
mNo edit summary |
|||
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
A delta potential, | {{Quantum Mechanics A}} | ||
A delta function potential, <math>V(x)=V_0\delta(x-a)\!</math>, is a special case of the symmetric finite square well; it is the limit in which the width of the well goes to zero and the depth of the well goes to infinity, while the product of the height and depth remains constant. For such a potential, the wave function is still continuous across the potential, ie. <math>x=a\!</math>. However, the first derivative of the wave function is not. | |||
For a particle subject to an attractive delta potential <math> V(x) = -V_0\delta(x)\!</math> the Schrödinger equation is | For a particle subject to an attractive delta function potential, <math>V(x)=-V_0\delta(x),\!</math> the Schrödinger equation is | ||
:<math>\frac{ | :<math>-\frac{\hbar^2}{2m}\frac{d^2 \psi(x)}{dx^2}-V_0\delta(x)\psi(x)=E\psi(x).</math> | ||
For <math> x \neq \!0 </math> the potential term vanishes, and all that is left is | For <math> x \neq \!0 </math> the potential term vanishes, and all that is left is | ||
:<math>\frac{d^2 \psi(x)}{dx^2} + \frac{2mE}{\hbar^2}\psi(x) = 0</math> | :<math>\frac{d^2\psi(x)}{dx^2}+\frac{2mE}{\hbar^2}\psi(x)=0.</math> | ||
One or more bound states may exist, for which <math>E<0\!</math>, and <math> \psi(x) \! </math> vanishes at <math> x = \pm \infty \!</math>. The bound state solutions are given by | |||
:<math> \psi_{ | :<math> \psi_{I}(x) = Ae^{kx},\, x < 0 \!</math> | ||
:<math> \psi_{ | :<math> \psi_{II}(x) = Be^{-kx},\, x > 0 \!</math> | ||
where | where <math>k=\frac{\sqrt{-2mE}}{\hbar}.</math> | ||
The first boundary condition, the continuity of <math> \psi(x) \!</math> at <math> x = 0 \!</math>, yields <math> A = B \! </math>. | The first boundary condition, the continuity of <math> \psi(x) \!</math> at <math> x = 0 \!</math>, yields <math> A = B \! </math>. | ||
Line 23: | Line 24: | ||
Integrating the whole equation across the potential gives | Integrating the whole equation across the potential gives | ||
:<math>\ | :<math>-\frac{\hbar^2}{2m}\int_{-\epsilon}^{\epsilon} \frac{d^2 \psi(x)}{dx^2}\,dx-V_0\int_{-\epsilon}^{+\epsilon} \delta(x)\psi(x)\,dx=\int_{-\epsilon}^{\epsilon} E \psi(x)\,dx</math> | ||
In the limit <math>\epsilon \rightarrow 0 \!</math>, we have | In the limit <math>\epsilon \rightarrow 0 \!</math>, we have | ||
:<math>\frac{ | :<math>-\frac{\hbar^2}{2m}\left[\frac{d \psi_{II}(0)}{dx}-\frac{d \psi_{I}(0)}{dx}\right]-V_0\psi(0)=0,</math> | ||
which yields the relation | which yields the relation, <math> k = \frac{mV_0}{\hbar^2}. \!</math>. | ||
Since we defined <math> k = \ | Since we defined <math> k = \frac{\sqrt{-2mE}}{\hbar}, \!</math>, we have <math> \frac{\sqrt{-2mE}}{\hbar} = \frac{mV_0}{\hbar^2} \!</math>. Then, the energy is <math> E = -\frac{mV_0^2}{2\hbar^2} \!</math> | ||
<math> E = -\frac{mV_0^2}{2\hbar^2} \!</math> | |||
Finally, we normalize <math> \psi(x) \!</math>: | Finally, we normalize <math> \psi(x) \!</math>: | ||
:<math>\int_{-\infty}^{\infty} |\psi(x)|dx=2|B|^2\int_{0}^{\infty} e^{-2kx}dx=\frac{|B|^2}{k}=1 </math> | :<math>\int_{-\infty}^{\infty} |\psi(x)|^2\,dx=2|B|^2\int_{0}^{\infty} e^{-2kx}\,dx=\frac{|B|^2}{k}=1 </math> | ||
so, | so, | ||
Line 46: | Line 46: | ||
:<math> \psi(x)=\frac{\sqrt{mV_{0}}}{\hbar}e^{\frac{-mV_{0}|x|}{\hbar^{2}}} </math> | :<math> \psi(x)=\frac{\sqrt{mV_{0}}}{\hbar}e^{\frac{-mV_{0}|x|}{\hbar^{2}}} </math> | ||
For a delta potential of the form <math>V_0\delta(x-a)\!</math>, we may apply a similar procedure to the one employed above to show that the discontinuity in the derivative of the wave function is | |||
:<math>\frac{d \psi(a^+)}{dx}-\frac{d \psi(a^-)}{dx}=\frac{2m V_0}{\hbar^2}\psi(a).</math> | |||
==Problem== | |||
(Double delta function potential) | |||
Consider a double delta function potential, <math>V(x)=-g\delta(x-a)-g\delta(x+a).\!</math> Prove that a ground state with even parity always exists. By means of a sketch, show that a first excited state also exists for a sufficiently large potential strength <math>g\!</math> and sufficiently large well separation <math>2a.\!</math> | |||
[[Phy5645/doubledelta|Solution]] | |||
==External | ==External Link== | ||
[http://en.wikipedia.org/wiki/Dirac_delta_function Additional information on the Dirac delta function] |
Latest revision as of 16:20, 6 August 2013
A delta function potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x)=V_0\delta(x-a)\!} , is a special case of the symmetric finite square well; it is the limit in which the width of the well goes to zero and the depth of the well goes to infinity, while the product of the height and depth remains constant. For such a potential, the wave function is still continuous across the potential, ie. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=a\!} . However, the first derivative of the wave function is not.
For a particle subject to an attractive delta function potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x)=-V_0\delta(x),\!} the Schrödinger equation is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{d^2 \psi(x)}{dx^2}-V_0\delta(x)\psi(x)=E\psi(x).}
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \neq \!0 } the potential term vanishes, and all that is left is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2\psi(x)}{dx^2}+\frac{2mE}{\hbar^2}\psi(x)=0.}
One or more bound states may exist, for which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E<0\!} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \! } vanishes at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \pm \infty \!} . The bound state solutions are given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{I}(x) = Ae^{kx},\, x < 0 \!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{II}(x) = Be^{-kx},\, x > 0 \!}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{\sqrt{-2mE}}{\hbar}.}
The first boundary condition, the continuity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \!} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0 \!} , yields Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = B \! } .
The second boundary condition, the discontinuity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\psi(x)}{dx} \! } at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0 \!} , can be obtained by integrating the Schrödinger equation from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\epsilon \!} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon \!} and then letting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon \rightarrow 0 \!}
Integrating the whole equation across the potential gives
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\int_{-\epsilon}^{\epsilon} \frac{d^2 \psi(x)}{dx^2}\,dx-V_0\int_{-\epsilon}^{+\epsilon} \delta(x)\psi(x)\,dx=\int_{-\epsilon}^{\epsilon} E \psi(x)\,dx}
In the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon \rightarrow 0 \!} , we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\left[\frac{d \psi_{II}(0)}{dx}-\frac{d \psi_{I}(0)}{dx}\right]-V_0\psi(0)=0,}
which yields the relation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \frac{mV_0}{\hbar^2}. \!} .
Since we defined Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \frac{\sqrt{-2mE}}{\hbar}, \!} , we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{-2mE}}{\hbar} = \frac{mV_0}{\hbar^2} \!} . Then, the energy is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = -\frac{mV_0^2}{2\hbar^2} \!}
Finally, we normalize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x) \!} :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^{\infty} |\psi(x)|^2\,dx=2|B|^2\int_{0}^{\infty} e^{-2kx}\,dx=\frac{|B|^2}{k}=1 }
so,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=\sqrt{k}=\frac{\sqrt{mV_{0}}}{\hbar} }
Evidently, the delta function well, regardless of its "strength" Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{0} \!} , has one bound state:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(x)=\frac{\sqrt{mV_{0}}}{\hbar}e^{\frac{-mV_{0}|x|}{\hbar^{2}}} }
For a delta potential of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0\delta(x-a)\!} , we may apply a similar procedure to the one employed above to show that the discontinuity in the derivative of the wave function is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d \psi(a^+)}{dx}-\frac{d \psi(a^-)}{dx}=\frac{2m V_0}{\hbar^2}\psi(a).}
Problem
(Double delta function potential)
Consider a double delta function potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x)=-g\delta(x-a)-g\delta(x+a).\!} Prove that a ground state with even parity always exists. By means of a sketch, show that a first excited state also exists for a sufficiently large potential strength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\!} and sufficiently large well separation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2a.\!}