Commutation Relations: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Multidimensional problems entail the possibility of having rotation as a part of solution. Just like in classical mechanics where we can calculate the [[Angular momentum|angular momentum]] using vector cross product, we have a very similar form of equation. However, just like any observable in quantum mechanics, this angular momentum is expressed by a Hermitian operator. Similar to classical mechanics we write the angular momentum operator <math>\mathbf L\!</math> as:
{{Quantum Mechanics A}}
:<math>\mathbf{L}=\mathbf{r}\times\mathbf{p}</math>
In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum:


Working in the spatial representation, we have <math>\mathbf{r}</math> as our radial vector, while <math>\mathbf{p}</math> is the momentum operator.
<math>\hat{\mathbf{L}}=\hat{\mathbf{r}}\times\hat{\mathbf{p}}</math>
:<math>\mathbf{p}=-i\hbar\nabla</math>


Using the cross product in Cartesian coordinate system, we get a component of <math>\bold L\!</math> in each direction:
Working in the position representation, this becomes
:<math>L_x=yp_z-zp_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\!</math>


Similarly, using cyclic permutation on the coordinates x, y, z, we get the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as (the Einstein summation convention of summing over repeated indices is understood here)
<math>\hat{\mathbf{L}}=\mathbf{r}\times\frac{\hbar}{i}\nabla.</math>
:<math>L_{\mu}=\epsilon_{\mu\nu\lambda}r_\nu p_\lambda\!</math>
 
with
Evaluating the cross product in the Cartesian coordinate system, we get a component of <math>\mathbf{L}\!</math> in each direction; for example,
:<math>\epsilon_{\mu\nu\lambda} =  
 
:<math>\hat{L}_x=\hat{y}\hat{p}_z-\hat{z}\hat{p}_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right),</math>
 
and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as
 
<math>\hat{L}_{\mu}=\epsilon_{\mu\nu\lambda}\hat{r}_\nu\hat{p}_\lambda,</math>
 
where
 
<math>\epsilon_{\mu\nu\lambda} =  
\begin{cases}
\begin{cases}
+1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\
+1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\
-1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\
-1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\
0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu.
0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu
\end{cases}
\end{cases}
</math>
</math>
Or we simply say that the even permutation gives 1, odd permutation gives -1, otherwise, we get 0.


We can immediately verify the following commutation relations:  
and we use the Einstein summation convention, in which sums over repeated indices are omitted.  The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations).
:<math>[L_\mu,r_\nu]=i\hbar\epsilon_{\mu\nu\lambda}r_\lambda</math>
 
:<math>[L_\mu,p_\nu]=i\hbar\epsilon_{\mu\nu\lambda}p_\lambda</math>
We can immediately verify the following commutation relations:
:<math>[L_\mu,L_\nu]=i\hbar\epsilon_{\mu\nu\lambda}L_\lambda</math> (this relation tells us :<math>\mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}</math>)
 
and
<math>[\hat{L}_\mu,\hat{x}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda</math>
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{r}]=i\hbar(\mathbf{r}\times\hat{\mathbf{n}})</math>
 
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{p}]=i\hbar(\mathbf{p}\times\hat{\mathbf{n}})</math>
<math>[\hat{L}_\mu,\hat{p}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{p}_\lambda</math>
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{L}]=i\hbar(\mathbf{L}\times\hat{\mathbf{n}})</math>
 
<math>[\hat{L}_\mu,\hat{L}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{L}_\lambda</math>  
 
The last relation may also be written as
 
<math>\mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}.</math>
 
Furthermore,
 
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{r}}]=i\hbar(\hat{\mathbf{r}}\times\hat{\mathbf{n}})</math>
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{p}}]=i\hbar(\hat{\mathbf{p}}\times\hat{\mathbf{n}})</math>
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{L}}]=i\hbar(\hat{\mathbf{L}}\times\hat{\mathbf{n}})</math>


For example,
For example,
:<math>
:<math>
\begin{align}
\begin{align}
\left[L_\mu,r_\nu\right] &= [\epsilon_{\mu\lambda\rho}r_\lambda p_\rho,r_\nu] = \epsilon_{\mu\lambda\rho}[r_\lambda p_\rho,r_\nu] = \epsilon_{\mu\lambda\rho}r_\lambda[ p_\rho,r_\nu] \\
\left[\hat{L}_\mu,\hat{x}_\nu\right] &= [\epsilon_{\mu\lambda\rho}\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}[\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}\hat{x}_\lambda[\hat{p}_\rho,\hat{x}_\nu] \\
&= \epsilon_{\mu\lambda\rho}r_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}r_\lambda\frac{\hbar}{i} \\
&= \epsilon_{\mu\lambda\rho}\hat{x}_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}\hat{x}_\lambda\frac{\hbar}{i} \\
&= i\hbar\epsilon_{\mu\nu\lambda}r_\lambda
&= i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda.
\end{align}
\end{align}
</math>
</math>
   
   
Also, note that for <math>L^2=L_x^2+L_y^2+L_z^2=L_{\mu} L_{\mu}</math>,
Also, note that for <math>\hat{mathbf{L}}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},</math>


:<math>
:<math>
\begin{align}
\begin{align}
\left[L_{\mu},L^2\right] &= \left[L_{\mu},L_{\nu} L_{\nu}\right] \\
\left[\hat{L}_{\mu},\hat{L}^2\right] &= \left[\hat{L}_{\mu},\hat{L}_{\nu}\hat{L}_{\nu}\right] \\
&= L_{\nu}\left[L_{\mu},L_{\nu}\right]+\left[L_{\mu},L_{\nu}\right]L_{\nu} \\
&= \hat{L}_{\nu}\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]+\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]\hat{L}_{\nu} \\
&= L_{\nu} i\hbar \epsilon_{\mu\nu\lambda} L_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} L_{\lambda} L_{\nu} \\
&= \hat{L}_{\nu} i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} \hat{L}_{\nu} \\
&= i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu} L_{\lambda} L_{\nu} \\
&= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu}\hat{L}_{\lambda}\hat{L}_{\nu} \\
&= i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} \\
&= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda}\hat{L}_{\nu}\hat{L}_{\lambda} \\
&= 0.  
&= 0.  
\end{align}
\end{align}
</math>
</math>
Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement.

Latest revision as of 23:26, 18 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum:

Working in the position representation, this becomes

Evaluating the cross product in the Cartesian coordinate system, we get a component of in each direction; for example,

and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as

where

and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations).

We can immediately verify the following commutation relations:

The last relation may also be written as

Furthermore,

For example,

Also, note that for

Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement.