Commutation Relations: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | |||
: | In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum: | ||
<math>\hat{\mathbf{L}}=\hat{\mathbf{r}}\times\hat{\mathbf{p}}</math> | |||
Working in the position representation, this becomes | |||
<math>\hat{\mathbf{L}}=\mathbf{r}\times\frac{\hbar}{i}\nabla.</math> | |||
Evaluating the cross product in the Cartesian coordinate system, we get a component of <math>\mathbf{L}\!</math> in each direction; for example, | |||
:<math>\hat{L}_x=\hat{y}\hat{p}_z-\hat{z}\hat{p}_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right),</math> | |||
and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as | |||
<math>\hat{L}_{\mu}=\epsilon_{\mu\nu\lambda}\hat{r}_\nu\hat{p}_\lambda,</math> | |||
where | |||
<math>\epsilon_{\mu\nu\lambda} = | |||
\begin{cases} | \begin{cases} | ||
+1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\ | +1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\ | ||
-1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\ | -1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\ | ||
0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu | 0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
We can immediately verify the following commutation relations: | and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations). | ||
We can immediately verify the following commutation relations: | |||
<math>[\hat{L}_\mu,\hat{x}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda</math> | |||
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{r}]=i\hbar(\mathbf{r}\times\hat{\mathbf{n}})</math> | |||
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{p}]=i\hbar(\mathbf{p}\times\hat{\mathbf{n}})</math> | <math>[\hat{L}_\mu,\hat{p}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{p}_\lambda</math> | ||
:<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{L}]=i\hbar(\mathbf{L}\times\hat{\mathbf{n}})</math> | |||
<math>[\hat{L}_\mu,\hat{L}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{L}_\lambda</math> | |||
The last relation may also be written as | |||
<math>\mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}.</math> | |||
Furthermore, | |||
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{r}}]=i\hbar(\hat{\mathbf{r}}\times\hat{\mathbf{n}})</math> | |||
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{p}}]=i\hbar(\hat{\mathbf{p}}\times\hat{\mathbf{n}})</math> | |||
:<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{L}}]=i\hbar(\hat{\mathbf{L}}\times\hat{\mathbf{n}})</math> | |||
For example, | For example, | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
\left[ | \left[\hat{L}_\mu,\hat{x}_\nu\right] &= [\epsilon_{\mu\lambda\rho}\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}[\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}\hat{x}_\lambda[\hat{p}_\rho,\hat{x}_\nu] \\ | ||
&= \epsilon_{\mu\lambda\rho} | &= \epsilon_{\mu\lambda\rho}\hat{x}_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}\hat{x}_\lambda\frac{\hbar}{i} \\ | ||
&= i\hbar\epsilon_{\mu\nu\lambda} | &= i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda. | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Also, note that for <math>L^2= | Also, note that for <math>\hat{mathbf{L}}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},</math> | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
\left[ | \left[\hat{L}_{\mu},\hat{L}^2\right] &= \left[\hat{L}_{\mu},\hat{L}_{\nu}\hat{L}_{\nu}\right] \\ | ||
&= | &= \hat{L}_{\nu}\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]+\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]\hat{L}_{\nu} \\ | ||
&= | &= \hat{L}_{\nu} i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} \hat{L}_{\nu} \\ | ||
&= i\hbar \epsilon_{\mu\nu\lambda} | &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu}\hat{L}_{\lambda}\hat{L}_{\nu} \\ | ||
&= i\hbar \epsilon_{\mu\nu\lambda} | &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda}\hat{L}_{\nu}\hat{L}_{\lambda} \\ | ||
&= 0. | &= 0. | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement. |
Latest revision as of 23:26, 18 August 2013
In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum:
Working in the position representation, this becomes
Evaluating the cross product in the Cartesian coordinate system, we get a component of in each direction; for example,
and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as
where
and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations).
We can immediately verify the following commutation relations:
The last relation may also be written as
Furthermore,
For example,
Also, note that for
Therefore, the magnitude of the angular momentum squared commutes with any one component of the angular momentum, and thus both may be specified exactly in a given measurement.