|
|
(4 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| {{Quantum Mechanics A}} | | {{Quantum Mechanics A}} |
| Since [[angular momentum]] can be represented as a generator of rotations you can use the equation for an infinitesmial rotation to construct the coordinates of angular momentum in spherical coordinates.
| | We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components. |
|
| |
|
| The cartesian coordinates x,y,z can be written in spherical as follows: | | The Cartesian coordinates <math>x,\!</math> <math>y,\!</math> and <math>z\!</math> can be written in terms of the spherical coordinates <math>r,\!</math> <math>\theta,\!</math> and <math>\phi\!</math> as follows: |
|
| |
|
| <math>x=r\sin\theta\cos\phi \! </math> | | <math>x=r\sin\theta\cos\phi,\!</math> <math>y=r\sin\theta\sin\phi,\!</math> <math>z=r\cos\theta\!</math> |
| <math>y=r\sin\theta\sin\phi \! </math> | |
| <math>z=r\cos\theta \! </math> | |
|
| |
|
| | Let us start with the <math>x\!</math> component of the angular momentum, <math>\hat{L}_x.</math> In Cartesian coordinates, this is |
|
| |
|
| Denote the state <math> \langle \mathbf{r} \!\, | = \langle \mathbf{r}\! \, \theta \phi | </math>
| | <math>\hat{L}_x=-i\hbar\left (y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right ).</math> |
|
| |
|
| If you choose <math> \alpha \! </math> along the z-axis then the only coordinate that will change is phi such that <math> \phi \rightarrow \phi + \alpha </math>. Now the state is written as: | | If we make use of the chain rule, then we obtain |
|
| |
|
| <math> \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{z}\right) = \langle \mathbf{r} \! \, \theta \phi + \alpha | </math> | | <math>\hat{L}_{x} = -i\hbar\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right).</math> |
|
| |
|
| Working to first order in alpha the right hand side becomes:
| | Similarly, the <math>y\!</math> and <math>z\!</math> components may be found to be |
|
| |
|
| <math> \langle \mathbf{r}\! \, \theta \phi | + \alpha \frac{\partial}{\partial \phi} \langle \mathbf{r}\! \, \theta \phi | </math> | | <math>\hat{L}_{y} = -i\hbar\left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math> |
|
| |
|
| Therefore <math> L_{z} = \frac{\hbar}{i} \frac{\partial}{\partial \phi} </math>
| | and |
|
| |
|
| | <math>\hat{L}_{z} = -i\hbar\frac{\partial}{\partial \phi}.</math> |
|
| |
|
| Now choose <math> \alpha \! </math> along the x-axis then the cartesian coordinates are changed such that:
| | ==Problem== |
| <math> x \rightarrow x \! </math> ,
| |
| <math> y \rightarrow y - \alpha z \!</math>, and
| |
| <math> z \rightarrow z + \alpha y \! </math>,
| |
|
| |
|
| from these transformations it can be determined that <math> \delta \theta = -\alpha\sin\phi \! </math> since <math> \delta z = \alpha y \! </math>
| | (Richard L. Liboff, ''Introductory Quantum Mechanics'', 2nd Edition, pp. 377-379) |
| and since x does not change it can be determined that <math> \delta \phi = -\alpha\cot\theta \cos\phi \! </math>.
| |
|
| |
|
| This means that the original state is now written as:
| | Show, using the above results, that the operator, |
| <math> \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{x}\right) = \langle \mathbf{r} \! \, \,\theta - \alpha\sin\phi \, \phi - \alpha\cot\theta\cos\phi | </math>
| |
|
| |
|
| Expanding the right hand side of the above equation as before to the first order of alpha the whole equation becomes:
| | :<math> \hat{R}(\Delta\phi)=\exp \left (\frac{i}{\hbar}\Delta\phi\hat{L}_z\right ),</math> |
| <math> \langle \mathbf{r}\! \, \theta \phi | L_{x} = \frac{\hbar}{i} \left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right) \langle \mathbf{r}\! \, \theta \phi | </math> | |
|
| |
|
| Therfore <math> L_{x} = \frac{\hbar}{i}\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right) </math>
| | when applied to a function <math> f(\phi)\!</math> of the azimuthal angle <math>\phi,\!</math> rotates the angle <math>\phi\!</math> to <math>\phi+\Delta\phi.\!</math> That is, show that |
|
| |
|
| Using the same techinque, choose <math> \alpha \! </math> along the y-axis and the coordinates will change in a similar fashion such that it can be shown that <math> L_{y} = \frac{\hbar}{i} \left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math>
| | <math>\hat{R}(\Delta\phi)f(\phi)=f(\phi+\Delta\phi).</math> |
| | |
| | [[Phy5645/Angular Momentum Problem 1|Solution]] |
We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components.
The Cartesian coordinates
and
can be written in terms of the spherical coordinates
and
as follows:
Let us start with the
component of the angular momentum,
In Cartesian coordinates, this is
If we make use of the chain rule, then we obtain
Similarly, the
and
components may be found to be
and
Problem
(Richard L. Liboff, Introductory Quantum Mechanics, 2nd Edition, pp. 377-379)
Show, using the above results, that the operator,

when applied to a function
of the azimuthal angle
rotates the angle
to
That is, show that
Solution