Spherical Coordinates: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Quantum Mechanics A}}
{{Quantum Mechanics A}}
Since [[angular momentum]] can be represented as a generator of rotations you can use the equation for an infinitesmial rotation to construct the coordinates of angular momentum in spherical coordinates.
We now write down the Cartesian components of the angular momentum operator in spherical coordinates.  We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components.


The cartesian coordinates x,y,z can be written in spherical as follows:
The Cartesian coordinates <math>x,\!</math> <math>y,\!</math> and <math>z\!</math> can be written in terms of the spherical coordinates <math>r,\!</math> <math>\theta,\!</math> and <math>\phi\!</math> as follows:


<math>x=r\sin\theta\cos\phi \! </math>
<math>x=r\sin\theta\cos\phi,\!</math> <math>y=r\sin\theta\sin\phi,\!</math> <math>z=r\cos\theta\!</math>
<math>y=r\sin\theta\sin\phi \! </math>
<math>z=r\cos\theta \! </math>


Let us start with the <math>x\!</math> component of the angular momentum, <math>\hat{L}_x.</math>  In Cartesian coordinates, this is


Denote the state <math> \langle \mathbf{r} \!\, | = \langle \mathbf{r}\! \\theta \phi |  </math>
<math>\hat{L}_x=-i\hbar\left (y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right ).</math>


If you choose <math> \alpha \! </math> along the z-axis then the only coordinate that will change is phi such that <math> \phi \rightarrow \phi + \alpha </math>.  Now the state is written as:
If we make use of the chain rule, then we obtain


<math> \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{z}\right) = \langle \mathbf{r} \! \, \theta \phi + \alpha | </math>
<math>\hat{L}_{x} = -i\hbar\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right).</math>


Working to first order in alpha the right hand side becomes:
Similarly, the <math>y\!</math> and <math>z\!</math> components may be found to be


<math> \langle \mathbf{r}\! \, \theta \phi | + \alpha \frac{\partial}{\partial \phi} \langle \mathbf{r}\! \, \theta \phi | </math>
<math>\hat{L}_{y} = -i\hbar\left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math>


Therefore <math> L_{z} = \frac{\hbar}{i} \frac{\partial}{\partial \phi} </math>
and


<math>\hat{L}_{z} = -i\hbar\frac{\partial}{\partial \phi}.</math>


Now choose <math> \alpha \! </math> along the x-axis then the cartesian coordinates are changed such that:
==Problem==
<math> x \rightarrow x  \!  </math> ,
<math> y \rightarrow y - \alpha z  \!</math>, and
<math> z \rightarrow z + \alpha y \! </math>,


from these transformations it can be determined that <math> \delta \theta = -\alpha\sin\phi \! </math> since <math> \delta z = \alpha y \! </math>
(Richard L. Liboff, ''Introductory Quantum Mechanics'', 2nd Edition, pp. 377-379)
and since x does not change it can be determined that <math> \delta \phi  = -\alpha\cot\theta \cos\phi \! </math>.


This means that the original state is now written as:
Show, using the above results, that the operator,
<math> \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{x}\right) = \langle \mathbf{r} \! \, \,\theta - \alpha\sin\phi \, \phi - \alpha\cot\theta\cos\phi | </math>


Expanding the right hand side of the above equation as before to the first order of alpha the whole equation becomes:
:<math> \hat{R}(\Delta\phi)=\exp \left (\frac{i}{\hbar}\Delta\phi\hat{L}_z\right ),</math>
<math> \langle \mathbf{r}\! \, \theta \phi | L_{x} = \frac{\hbar}{i} \left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right)   \langle \mathbf{r}\! \, \theta \phi | </math>


Therfore <math> L_{x} = \frac{\hbar}{i}\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right) </math>
when applied to a function <math> f(\phi)\!</math> of the azimuthal angle <math>\phi,\!</math> rotates the angle <math>\phi\!</math> to <math>\phi+\Delta\phi.\!</math> That is, show that


Using the same techinque, choose <math> \alpha \! </math> along the y-axis and the coordinates will change in a similar fashion such that it can be shown that <math> L_{y} = \frac{\hbar}{i} \left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math>
<math>\hat{R}(\Delta\phi)f(\phi)=f(\phi+\Delta\phi).</math>
 
[[Phy5645/Angular Momentum Problem 1|Solution]]

Latest revision as of 22:25, 28 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

We now write down the Cartesian components of the angular momentum operator in spherical coordinates. We will make use of this result later in determining the eigenfunctions of the angular momentum squared and of one of its components.

The Cartesian coordinates and can be written in terms of the spherical coordinates and as follows:

Let us start with the component of the angular momentum, In Cartesian coordinates, this is

If we make use of the chain rule, then we obtain

Similarly, the and components may be found to be

and

Problem

(Richard L. Liboff, Introductory Quantum Mechanics, 2nd Edition, pp. 377-379)

Show, using the above results, that the operator,

when applied to a function of the azimuthal angle rotates the angle to That is, show that

Solution