Spherical Well: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Quantum Mechanics A}}
{{Quantum Mechanics A}}
Let's consider spherical well potentials,
Let us now consider a spherical well potential, given by
:<math>
 
<math>
V(\mathbf{r}) =  
V(\mathbf{r}) =  
\begin{cases}
\begin{cases}
V_0, & 0\leq r< a \\
-V_0, & 0\leq r< a \\
0, & r>a  
0, & r>a.
\end{cases}
\end{cases}
</math>
</math>


The [[Schrödinger equation]]s for these two regions can be written by
The [[Schrödinger Equation|Schrödinger equations]] for these two regions are


:<math> \left(\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l(r)=Eu_l(r)
<math> \left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l=Eu_l</math>
</math>  
for <math> 0\leq r< a \!</math> and
for <math> 0\leq r< a \!</math> and


:<math> \left(\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l(r)=Eu_l(r) </math>  
<math>\left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l=Eu_l</math>  
for <math> r>a \! </math>.
 
for <math> r>a. \! </math>


The general solutions are
The general solutions are


:<math>
<math>
\begin{align}
\begin{align}
&\frac{u_{\ell}(r)}{r} = C_{\ell} j_{\ell} (k'r), & r \leq d, \\
&\frac{u_{l}(r)}{r} = C_{l} j_{l} (k'r), & r \leq a, \\
&\frac{u_{\ell}(r)}{r} = A_{\ell}j_{\ell}(kr) +Bn_{\ell}(kr), & r > d,  
&\frac{u_{l}(r)}{r} = A_{l}j_{l}(kr) +Bn_{l}(kr), & r > a,  
\end{align}
\end{align}
</math>
</math>
where <math> k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!</math> and <math> k = \sqrt{\frac{2mE}{\hbar}} \!</math>.


For the <math>l=0\!</math> term, the centrifugal barrier drops out and the equations become the following
where <math> k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!</math> and <math> k = \sqrt{\frac{2mE}{\hbar}}.\!</math>
:<math>
 
Let us now consider bound states for the special case, <math>l=0.\!</math> In this case, the centrifugal barrier drops out and the equations become
 
<math>
\begin{cases}
\begin{cases}
0\leq r< a & (\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}-V_0)u_0(r)=Eu_0(r)\\
\left (\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}-V_0\right )u_0=Eu_0, & 0\leq r< a \\
r>a & (\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2})u_0(r)=Eu_0(r)
\frac{-\hbar^2}{2m}\frac{d^2u_0}{dr^2}=Eu_0, & r>a.
\end{cases}
\end{cases}
</math>
</math>


The generalized solutions are
The solution for this case is
:<math>
 
<math>
\begin{cases}
\begin{cases}
0\leq r< a & u_0(r)=Ae^{ikr}+Be^{-ikr}\\
u_0(r)=Ae^{ikr}+Be^{-ikr}, & 0\leq r< a \\
r>a & u_0(r)=Ce^{ik'r}+De^{-ik'r}
u_0(r)=Ce^{\kappa r}+De^{-\kappa r}, & r>a,
\end{cases}
\end{cases}
</math>
</math>


Using the boundary condition, <math>u(r=0)=0\!</math>, we find that <math>A=-B\!</math>. The second equation can then be reduced to sinusoidal function where <math>\alpha=2iA\!</math>.
where <math>\kappa=\frac{\sqrt{-2mE}}{\hbar}.</math>
:<math>u_0(r)=2iA\sin(kr)=\alpha\sin(kr)=\alpha\sin\left(\frac{r}{\hbar}\sqrt{2m(E+V_0)}\right)</math>
 
for <math>r>a\!</math>, we know that <math>D=0\!</math> since as <math>r\!</math> approaches infinity, the wavefunction does not go to zero.
Using the boundary condition, <math>u(0)=0,\!</math> we find that <math>A=-B.\!</math> The wave functions for <math>0\leq r<a\!</math> thus reduces to
:<math>u_0(r)=Ce^{ik'r}+De^{-ik'r}=Ce^{-\frac{r}{\hbar}\sqrt{-2mE}}</math>
 
<math>u_0(r)=2iA\sin(kr)=\alpha\sin(kr),\!</math>
 
where <math>\alpha=2iA.\!</math>
 
For <math>r>a\!</math>, we know that <math>D=0\!</math> since, as <math>r\rightarrow\infty,\!</math> the wavefunction must go to zero. Therefore, for the region in which <math>r>a,\!</math>
 
<math>u_0(r)=Ce^{-\kappa r}.\!</math>
 
Using the conditions that at <math>r=a,\!</math> the wave functions and their derivatives must be continuous yields the following equations:
 
<math>\alpha\sin{ka}=Ce^{-\kappa a}\!</math>
 
and
 
<math>k\alpha\cos{ka}=-\kappa Ce^{-\kappa a}.\!</math>
 
Dividing the second equation by the first, we obtain
 
<math>-k\cot{ka}=\kappa,\!</math>
 
which is just the solution for the odd states in a [[One-Dimensional Bound States|one-dimensional square well]].


Matching the conditions that at <math>r=a\!</math>, the wavefunctions and their derivatives must be continuous which results in 2 equations
This, combined with the fact that
:<math>\alpha\sin\left(\frac{a}{\hbar}\sqrt{2m(E+V_0)}\right)=Ce^{-\frac{a}{\hbar}\sqrt{-2mE}}</math>
:<math>\alpha\frac{\sqrt{2m(E+V_0)}}{\hbar}\cos\left(\frac{a}{\hbar}\sqrt{2m(E+V_0)}\right)=-\frac{\sqrt{-2mE}}{\hbar}Ce^{-\frac{a}{\hbar}\sqrt{-2mE}}</math>


Dividing the above equations, we find
<math>\kappa^2+k^2=\frac{2mV_0}{\hbar^2},</math>
:<math>-\cot\left(\sqrt{\frac{2m}{\hbar^2}(V_0-|E|)a^2}\right)=\frac{\sqrt{\frac{2m|E|}{\hbar^2}}}{\sqrt{\frac{2m(V_0-|E|)}{\hbar^2}}}</math>, which is the solution for the odd state in [[1D bound states|1D square well]].


Solving for <math>V_0\!</math>, we know that there is no bound state for
shows that no bound state exists if <math>V_0<\frac{\pi^2\hbar^2}{8ma^2}.</math>
:<math>V_0<\frac{\pi^2\hbar^2}{8ma^2}</math>.

Latest revision as of 09:43, 26 October 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Let us now consider a spherical well potential, given by

The Schrödinger equations for these two regions are

for and

for

The general solutions are

where and

Let us now consider bound states for the special case, In this case, the centrifugal barrier drops out and the equations become

The solution for this case is

where

Using the boundary condition, we find that The wave functions for thus reduces to

where

For , we know that since, as the wavefunction must go to zero. Therefore, for the region in which

Using the conditions that at the wave functions and their derivatives must be continuous yields the following equations:

and

Dividing the second equation by the first, we obtain

which is just the solution for the odd states in a one-dimensional square well.

This, combined with the fact that

shows that no bound state exists if