Spherical Well: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | {{Quantum Mechanics A}} | ||
Let | Let us now consider a spherical well potential, given by | ||
<math> | |||
V(\mathbf{r}) = | V(\mathbf{r}) = | ||
\begin{cases} | \begin{cases} | ||
V_0, & 0\leq r< a \\ | -V_0, & 0\leq r< a \\ | ||
0, & r>a | 0, & r>a. | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
The [[Schrödinger | The [[Schrödinger Equation|Schrödinger equations]] for these two regions are | ||
<math> \left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l=Eu_l</math> | |||
</math> | |||
for <math> 0\leq r< a \!</math> and | for <math> 0\leq r< a \!</math> and | ||
<math>\left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l=Eu_l</math> | |||
for <math> r>a \! </math> | |||
for <math> r>a. \! </math> | |||
The general solutions are | The general solutions are | ||
<math> | |||
\begin{align} | \begin{align} | ||
&\frac{u_{ | &\frac{u_{l}(r)}{r} = C_{l} j_{l} (k'r), & r \leq a, \\ | ||
&\frac{u_{ | &\frac{u_{l}(r)}{r} = A_{l}j_{l}(kr) +Bn_{l}(kr), & r > a, | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
where <math> k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!</math> and <math> k = \sqrt{\frac{2mE}{\hbar}}.\!</math> | |||
Let us now consider bound states for the special case, <math>l=0.\!</math> In this case, the centrifugal barrier drops out and the equations become | |||
<math> | |||
\begin{cases} | \begin{cases} | ||
\left (\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}-V_0\right )u_0=Eu_0, & 0\leq r< a \\ | |||
\frac{-\hbar^2}{2m}\frac{d^2u_0}{dr^2}=Eu_0, & r>a. | |||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
The | The solution for this case is | ||
<math> | |||
\begin{cases} | \begin{cases} | ||
u_0(r)=Ae^{ikr}+Be^{-ikr}, & 0\leq r< a \\ | |||
u_0(r)=Ce^{\kappa r}+De^{-\kappa r}, & r>a, | |||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
Using the boundary condition, <math>u( | where <math>\kappa=\frac{\sqrt{-2mE}}{\hbar}.</math> | ||
Using the boundary condition, <math>u(0)=0,\!</math> we find that <math>A=-B.\!</math> The wave functions for <math>0\leq r<a\!</math> thus reduces to | |||
<math>u_0(r)=2iA\sin(kr)=\alpha\sin(kr),\!</math> | |||
where <math>\alpha=2iA.\!</math> | |||
For <math>r>a\!</math>, we know that <math>D=0\!</math> since, as <math>r\rightarrow\infty,\!</math> the wavefunction must go to zero. Therefore, for the region in which <math>r>a,\!</math> | |||
<math>u_0(r)=Ce^{-\kappa r}.\!</math> | |||
Using the conditions that at <math>r=a,\!</math> the wave functions and their derivatives must be continuous yields the following equations: | |||
<math>\alpha\sin{ka}=Ce^{-\kappa a}\!</math> | |||
and | |||
<math>k\alpha\cos{ka}=-\kappa Ce^{-\kappa a}.\!</math> | |||
Dividing the second equation by the first, we obtain | |||
<math>-k\cot{ka}=\kappa,\!</math> | |||
which is just the solution for the odd states in a [[One-Dimensional Bound States|one-dimensional square well]]. | |||
This, combined with the fact that | |||
<math>\kappa^2+k^2=\frac{2mV_0}{\hbar^2},</math> | |||
shows that no bound state exists if <math>V_0<\frac{\pi^2\hbar^2}{8ma^2}.</math> | |||
Latest revision as of 09:43, 26 October 2013
Let us now consider a spherical well potential, given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\mathbf{r}) = \begin{cases} -V_0, & 0\leq r< a \\ 0, & r>a. \end{cases} }
The Schrödinger equations for these two regions are
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l=Eu_l}
for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq r< a \!} and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l=Eu_l}
for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r>a. \! }
The general solutions are
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} &\frac{u_{l}(r)}{r} = C_{l} j_{l} (k'r), & r \leq a, \\ &\frac{u_{l}(r)}{r} = A_{l}j_{l}(kr) +Bn_{l}(kr), & r > a, \end{align} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \sqrt{\frac{2mE}{\hbar}}.\!}
Let us now consider bound states for the special case, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l=0.\!} In this case, the centrifugal barrier drops out and the equations become
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \left (\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}-V_0\right )u_0=Eu_0, & 0\leq r< a \\ \frac{-\hbar^2}{2m}\frac{d^2u_0}{dr^2}=Eu_0, & r>a. \end{cases} }
The solution for this case is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} u_0(r)=Ae^{ikr}+Be^{-ikr}, & 0\leq r< a \\ u_0(r)=Ce^{\kappa r}+De^{-\kappa r}, & r>a, \end{cases} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa=\frac{\sqrt{-2mE}}{\hbar}.}
Using the boundary condition, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(0)=0,\!} we find that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=-B.\!} The wave functions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq r<a\!} thus reduces to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0(r)=2iA\sin(kr)=\alpha\sin(kr),\!}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=2iA.\!}
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r>a\!} , we know that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=0\!} since, as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow\infty,\!} the wavefunction must go to zero. Therefore, for the region in which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r>a,\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0(r)=Ce^{-\kappa r}.\!}
Using the conditions that at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=a,\!} the wave functions and their derivatives must be continuous yields the following equations:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha\sin{ka}=Ce^{-\kappa a}\!}
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\alpha\cos{ka}=-\kappa Ce^{-\kappa a}.\!}
Dividing the second equation by the first, we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -k\cot{ka}=\kappa,\!}
which is just the solution for the odd states in a one-dimensional square well.
This, combined with the fact that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa^2+k^2=\frac{2mV_0}{\hbar^2},}
shows that no bound state exists if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0<\frac{\pi^2\hbar^2}{8ma^2}.}