|
|
(5 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| {{Quantum Mechanics A}} | | {{Quantum Mechanics A}} |
| Let's consider spherical well potentials, | | Let us now consider a spherical well potential, given by |
| :<math>
| | |
| | <math> |
| V(\mathbf{r}) = | | V(\mathbf{r}) = |
| \begin{cases} | | \begin{cases} |
| V_0, & 0\leq r< a \\ | | -V_0, & 0\leq r< a \\ |
| 0, & r>a | | 0, & r>a. |
| \end{cases} | | \end{cases} |
| </math> | | </math> |
|
| |
|
| The [[Schrödinger equation]]s for these two regions can be written by | | The [[Schrödinger Equation|Schrödinger equations]] for these two regions are |
|
| |
|
| :<math> \left(\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l(r)=Eu_l(r)
| | <math> \left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}-V_0\right)u_l=Eu_l</math> |
| </math> | | |
| for <math> 0\leq r< a \!</math> and | | for <math> 0\leq r< a \!</math> and |
|
| |
|
| :<math> \left(\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l(r)=Eu_l(r) </math>
| | <math>\left(\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2l(l+1)}{2mr^2}\right)u_l=Eu_l</math> |
| for <math> r>a \! </math>. | | |
| | for <math> r>a. \! </math> |
|
| |
|
| The general solutions are | | The general solutions are |
|
| |
|
| :<math>
| | <math> |
| \begin{align} | | \begin{align} |
| &\frac{u_{\ell}(r)}{r} = C_{\ell} j_{\ell} (k'r), & r \leq d, \\ | | &\frac{u_{l}(r)}{r} = C_{l} j_{l} (k'r), & r \leq a, \\ |
| &\frac{u_{\ell}(r)}{r} = A_{\ell}j_{\ell}(kr) +Bn_{\ell}(kr), & r > d, | | &\frac{u_{l}(r)}{r} = A_{l}j_{l}(kr) +Bn_{l}(kr), & r > a, |
| \end{align} | | \end{align} |
| </math> | | </math> |
| where <math> k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!</math> and <math> k = \sqrt{\frac{2mE}{\hbar}} \!</math>.
| |
|
| |
|
| For the <math>l=0\!</math> term, the centrifugal barrier drops out and the equations become the following
| | where <math> k' = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \!</math> and <math> k = \sqrt{\frac{2mE}{\hbar}}.\!</math> |
| :<math>
| | |
| | Let us now consider bound states for the special case, <math>l=0.\!</math> In this case, the centrifugal barrier drops out and the equations become |
| | |
| | <math> |
| \begin{cases} | | \begin{cases} |
| 0\leq r< a & (\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2}-V_0)u_0(r)=Eu_0(r)\\
| | \left (\frac{-\hbar^2}{2m}\frac{d^2}{dr^2}-V_0\right )u_0=Eu_0, & 0\leq r< a \\ |
| r>a & (\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial r^2})u_0(r)=Eu_0(r)
| | \frac{-\hbar^2}{2m}\frac{d^2u_0}{dr^2}=Eu_0, & r>a. |
| \end{cases} | | \end{cases} |
| </math> | | </math> |
|
| |
|
| The generalized solutions are | | The solution for this case is |
| :<math>
| | |
| | <math> |
| \begin{cases} | | \begin{cases} |
| 0\leq r< a & u_0(r)=Ae^{ikr}+Be^{-ikr}\\
| | u_0(r)=Ae^{ikr}+Be^{-ikr}, & 0\leq r< a \\ |
| r>a & u_0(r)=Ce^{ik'r}+De^{-ik'r}
| | u_0(r)=Ce^{\kappa r}+De^{-\kappa r}, & r>a, |
| \end{cases} | | \end{cases} |
| </math> | | </math> |
|
| |
|
| Using the boundary condition, <math>u(r=0)=0\!</math>, we find that <math>A=-B\!</math>. The second equation can then be reduced to sinusoidal function where <math>\alpha=2iA\!</math>. | | where <math>\kappa=\frac{\sqrt{-2mE}}{\hbar}.</math> |
| :<math>u_0(r)=2iA\sin(kr)=\alpha\sin(kr)=\alpha\sin\left(\frac{r}{\hbar}\sqrt{2m(E+V_0)}\right)</math>
| | |
| for <math>r>a\!</math>, we know that <math>D=0\!</math> since as <math>r\!</math> approaches infinity, the wavefunction does not go to zero.
| | Using the boundary condition, <math>u(0)=0,\!</math> we find that <math>A=-B.\!</math> The wave functions for <math>0\leq r<a\!</math> thus reduces to |
| :<math>u_0(r)=Ce^{ik'r}+De^{-ik'r}=Ce^{-\frac{r}{\hbar}\sqrt{-2mE}}</math>
| | |
| | <math>u_0(r)=2iA\sin(kr)=\alpha\sin(kr),\!</math> |
| | |
| | where <math>\alpha=2iA.\!</math> |
| | |
| | For <math>r>a\!</math>, we know that <math>D=0\!</math> since, as <math>r\rightarrow\infty,\!</math> the wavefunction must go to zero. Therefore, for the region in which <math>r>a,\!</math> |
| | |
| | <math>u_0(r)=Ce^{-\kappa r}.\!</math> |
| | |
| | Using the conditions that at <math>r=a,\!</math> the wave functions and their derivatives must be continuous yields the following equations: |
| | |
| | <math>\alpha\sin{ka}=Ce^{-\kappa a}\!</math> |
| | |
| | and |
| | |
| | <math>k\alpha\cos{ka}=-\kappa Ce^{-\kappa a}.\!</math> |
| | |
| | Dividing the second equation by the first, we obtain |
| | |
| | <math>-k\cot{ka}=\kappa,\!</math> |
| | |
| | which is just the solution for the odd states in a [[One-Dimensional Bound States|one-dimensional square well]]. |
|
| |
|
| Matching the conditions that at <math>r=a\!</math>, the wavefunctions and their derivatives must be continuous which results in 2 equations
| | This, combined with the fact that |
| :<math>\alpha\sin\left(\frac{a}{\hbar}\sqrt{2m(E+V_0)}\right)=Ce^{-\frac{a}{\hbar}\sqrt{-2mE}}</math>
| |
| :<math>\alpha\frac{\sqrt{2m(E+V_0)}}{\hbar}\cos\left(\frac{a}{\hbar}\sqrt{2m(E+V_0)}\right)=-\frac{\sqrt{-2mE}}{\hbar}Ce^{-\frac{a}{\hbar}\sqrt{-2mE}}</math>
| |
|
| |
|
| Dividing the above equations, we find
| | <math>\kappa^2+k^2=\frac{2mV_0}{\hbar^2},</math> |
| :<math>-\cot\left(\sqrt{\frac{2m}{\hbar^2}(V_0-|E|)a^2}\right)=\frac{\sqrt{\frac{2m|E|}{\hbar^2}}}{\sqrt{\frac{2m(V_0-|E|)}{\hbar^2}}}</math>, which is the solution for the odd state in [[1D bound states|1D square well]].
| |
|
| |
|
| Solving for <math>V_0\!</math>, we know that there is no bound state for
| | shows that no bound state exists if <math>V_0<\frac{\pi^2\hbar^2}{8ma^2}.</math> |
| :<math>V_0<\frac{\pi^2\hbar^2}{8ma^2}</math>.
| |
Let us now consider a spherical well potential, given by
The Schrödinger equations for these two regions are
for
and
for
The general solutions are
where
and
Let us now consider bound states for the special case,
In this case, the centrifugal barrier drops out and the equations become
The solution for this case is
where
Using the boundary condition,
we find that
The wave functions for
thus reduces to
where
For
, we know that
since, as
the wavefunction must go to zero. Therefore, for the region in which
Using the conditions that at
the wave functions and their derivatives must be continuous yields the following equations:
and
Dividing the second equation by the first, we obtain
which is just the solution for the odd states in a one-dimensional square well.
This, combined with the fact that
shows that no bound state exists if