Free Particle in Spherical Coordinates: Difference between revisions
No edit summary |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | {{Quantum Mechanics A}} | ||
A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0 | A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0,</math> so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well. The [[Schrödinger Equation|Schrödinger equation]] for the radial part of the wave function is | ||
<math>\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l=Eu_l.</math> | |||
Let <math>k^2=\frac{2m}{\hbar^2}|E-V|.</math> Rearranging the equation gives us | |||
<math>\left(-\frac{d^2}{dr^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l=0.</math> | |||
= | If we now let <math>\rho=kr,\!</math> then the equation reduces to the dimensionless form, | ||
<math>\left(-\frac{d^2}{d\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho),</math> | |||
where <math>d_l\!</math> and <math>d_l^{\dagger}\!</math> are the raising and lowering operators, | |||
<math>d_l=\frac{d}{d\rho}+\frac{l+1}{\rho}</math> | |||
:<math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math> | and | ||
<math>d_l^\dagger=-\frac{d}{d\rho}+\frac{l+1}{\rho}.</math> | |||
Because <math>d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger},</math> it follows that | |||
<math>d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho).</math> | |||
For <math>l=0,</math> | |||
<math>-\frac{d^2}{d\rho^2} u_0(\rho)=u_0(\rho),</math> | |||
whose solution is | |||
<math>u_0(\rho)=A\sin{\rho}-B\cos{\rho}.\!</math> | |||
The raising operator may now be applied to this state in order to find the solutions for higher values of <math>l.\!</math> By repeated application of this operator, we obtain the wave function for all values of <math>l:\!</math> | |||
<math>f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho),</math> | |||
where <math> j_l(\rho) \!</math> is a spherical Bessel function and <math> n_l(\rho) \! </math> is a spherical Neumann function, or spherical Bessel functions of the [http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalBesselFunctionoftheSecondKind.html second] kinds, respectively. | |||
==Properties of the Spherical Bessel and Neumann Functions== | |||
Explicit forms of the first few spherical Bessel and Neumann functions: | |||
<math> j_0(z) = \frac{\sin(z)}{z} </math> | |||
<math> j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} </math> | |||
<math> j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) </math> | |||
<math> n_0(z) = -\frac{\cos(z)}{z} </math> | |||
<math> n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} </math> | |||
<math> n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) </math> | |||
We may also define spherical Hankel functions of the [http://mathworld.wolfram.com/SphericalHankelFunctionoftheFirstKind.html first] and [http://mathworld.wolfram.com/SphericalHankelFunctionoftheSecondKind.html second] kind in terms of the spherical Bessel and Neumann functions: | |||
<math> h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) </math> | |||
and | and | ||
<math> h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) </math> | |||
The asymptotic | The asymptotic forms of the spherical Bessel and Neumann functions as <math>z\rightarrow\infty</math> are | ||
<math> j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} </math> | |||
and | and | ||
<math> n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z}. </math> | |||
The first few zeros of the spherical Bessel function for <math>l=0\!</math> and <math>l=1\!</math> are | |||
<math> l = 0: 3.142, 6.283, 9.425, 12.566, \ldots </math> | |||
and | |||
<math> l = 1: 4.493, 7.725, 10.904, 14.066, \ldots</math> | |||
The derivatives of the spherical Bessel and Neumann functions are | The derivatives of the spherical Bessel and Neumann functions are given by | ||
<math> j'_{l}(z) = \frac{l}{z}j_{l}(z) - j_{l+1}(z) </math> | |||
and | and | ||
<math> n'_{l}(z) = \frac{l}{z}n_{l}(z) - n_{l+1}(z). </math> |
Latest revision as of 23:39, 31 August 2013
A free particle is a specific case when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0=0\!} of the motion in a uniform potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=V_0,} so it is more useful to consider a particle moving in a uniform potential. We will make use of these results in the next section to discuss the spherical potential well. The Schrödinger equation for the radial part of the wave function is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l=Eu_l.}
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^2=\frac{2m}{\hbar^2}|E-V|.} Rearranging the equation gives us
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{d^2}{dr^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l=0.}
If we now let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=kr,\!} then the equation reduces to the dimensionless form,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{d^2}{d\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho),}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^{\dagger}\!} are the raising and lowering operators,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l=\frac{d}{d\rho}+\frac{l+1}{\rho}}
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^\dagger=-\frac{d}{d\rho}+\frac{l+1}{\rho}.}
Because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger},} it follows that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho).}
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l=0,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{d^2}{d\rho^2} u_0(\rho)=u_0(\rho),}
whose solution is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0(\rho)=A\sin{\rho}-B\cos{\rho}.\!}
The raising operator may now be applied to this state in order to find the solutions for higher values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l.\!} By repeated application of this operator, we obtain the wave function for all values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l:\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho),}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_l(\rho) \!} is a spherical Bessel function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_l(\rho) \! } is a spherical Neumann function, or spherical Bessel functions of the first and second kinds, respectively.
Properties of the Spherical Bessel and Neumann Functions
Explicit forms of the first few spherical Bessel and Neumann functions:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_0(z) = \frac{\sin(z)}{z} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_0(z) = -\frac{\cos(z)}{z} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) }
We may also define spherical Hankel functions of the first and second kind in terms of the spherical Bessel and Neumann functions:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) }
The asymptotic forms of the spherical Bessel and Neumann functions as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\rightarrow\infty}
are
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z}. }
The first few zeros of the spherical Bessel function for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l=0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l=1\!} are
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l = 0: 3.142, 6.283, 9.425, 12.566, \ldots }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l = 1: 4.493, 7.725, 10.904, 14.066, \ldots}
The derivatives of the spherical Bessel and Neumann functions are given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j'_{l}(z) = \frac{l}{z}j_{l}(z) - j_{l+1}(z) }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n'_{l}(z) = \frac{l}{z}n_{l}(z) - n_{l+1}(z). }