Spherical Coordinates: Difference between revisions
No edit summary |
No edit summary |
||
Line 39: | Line 39: | ||
Using the same techinque, choose <math> \alpha \! </math> along the y-axis and the coordinates will change in a similar fashion such that it can be shown that <math> L_{y} = \frac{\hbar}{i} \left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math> | Using the same techinque, choose <math> \alpha \! </math> along the y-axis and the coordinates will change in a similar fashion such that it can be shown that <math> L_{y} = \frac{\hbar}{i} \left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) </math> | ||
==Problem== | |||
(Richard L. Liboff, ''Introductory Quantum Mechanics'', 2nd Edition, pp. 377-379) | |||
Show that the operator, | |||
:<math> \hat{R}_{\Delta \phi} \equiv \exp \left( \frac{i \Delta \phi \hat{L}_z}{\hbar} \right),</math> | |||
when acting on a function <math> f(\phi)\!</math> of the angle <math>\phi,\!</math> changes <math> f \!</math> by a rotation of coordinates about the <math> z \!</math> axis so that the radius through <math> \phi \!</math> is rotated to the radius through <math> \phi + \Delta \phi \!</math>. That is, show that | |||
<math> \hat{R}_{\Delta\phi} f(\phi) = f \left( \phi + \Delta \phi \right) </math>. | |||
[[Phy5645/Angular Momentum Problem 1|A sample problem]] |
Revision as of 22:03, 28 August 2013
Since angular momentum can be represented as a generator of rotations you can use the equation for an infinitesmial rotation to construct the coordinates of angular momentum in spherical coordinates.
The cartesian coordinates x,y,z can be written in spherical as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=r\sin\theta\cos\phi \! } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=r\sin\theta\sin\phi \! } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=r\cos\theta \! }
Denote the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{r} \!\, | = \langle \mathbf{r}\! \, \theta \phi | }
If you choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \! } along the z-axis then the only coordinate that will change is phi such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi \rightarrow \phi + \alpha } . Now the state is written as:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{z}\right) = \langle \mathbf{r} \! \, \theta \phi + \alpha | }
Working to first order in alpha the right hand side becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{r}\! \, \theta \phi | + \alpha \frac{\partial}{\partial \phi} \langle \mathbf{r}\! \, \theta \phi | }
Therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{z} = \frac{\hbar}{i} \frac{\partial}{\partial \phi} }
Now choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \! }
along the x-axis then the cartesian coordinates are changed such that:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \rightarrow x \! }
,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \rightarrow y - \alpha z \!}
, and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z \rightarrow z + \alpha y \! }
,
from these transformations it can be determined that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \theta = -\alpha\sin\phi \! } since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta z = \alpha y \! } and since x does not change it can be determined that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta \phi = -\alpha\cot\theta \cos\phi \! } .
This means that the original state is now written as: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{r}\! \, \theta \phi | \left(1 + \frac{i}{\hbar} \alpha L_{x}\right) = \langle \mathbf{r} \! \, \,\theta - \alpha\sin\phi \, \phi - \alpha\cot\theta\cos\phi | }
Expanding the right hand side of the above equation as before to the first order of alpha the whole equation becomes: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \mathbf{r}\! \, \theta \phi | L_{x} = \frac{\hbar}{i} \left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right) \langle \mathbf{r}\! \, \theta \phi | }
Therfore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{x} = \frac{\hbar}{i}\left( -\sin\phi \frac{\partial}{\partial \theta} \, -\cot\theta\cos\phi \frac{\partial}{\partial\phi} \! \right) }
Using the same techinque, choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \! } along the y-axis and the coordinates will change in a similar fashion such that it can be shown that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{y} = \frac{\hbar}{i} \left(\cos\phi \frac{\partial}{\partial\theta} - \cot\theta\sin\phi \frac{\partial}{\partial\phi} \! \right) }
Problem
(Richard L. Liboff, Introductory Quantum Mechanics, 2nd Edition, pp. 377-379)
Show that the operator,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta \phi} \equiv \exp \left( \frac{i \Delta \phi \hat{L}_z}{\hbar} \right),}
when acting on a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\phi)\!} of the angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi,\!} changes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \!} by a rotation of coordinates about the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z \!} axis so that the radius through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi \!} is rotated to the radius through Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi + \Delta \phi \!} . That is, show that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{R}_{\Delta\phi} f(\phi) = f \left( \phi + \Delta \phi \right) } .