WKB in Spherical Coordinates: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<math>\ \int_{r_1}^{r_2}\sqrt{2m\left(E_n - V(r) - \frac{\hbar^2}{2m}\frac{(\ell+\frac{1}{2})^2}{r^2}\right)}dr = \left(n + \frac{1}{2}\right)\pi\hbar </math> | <math>\ \int_{r_1}^{r_2}\sqrt{2m\left(E_n - V(r) - \frac{\hbar^2}{2m}\frac{(\ell+\frac{1}{2})^2}{r^2}\right)}dr = \left(n + \frac{1}{2}\right)\pi\hbar </math> | ||
== ? == | |||
For a central potential: | |||
:<math> p_r^2 = E - V(r) - \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}</math> | |||
:<math> | |||
\begin{align} | |||
\int_{r_1}^{r_2}p_r(r)dr &= \int_{0}^{\infty}\sqrt{2m\left(E_n - V(r) - \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right)}dr \\ | |||
&= \left(n + \frac{1}{2}\right)\pi\hbar | |||
\end{align} | |||
</math> | |||
[[Phy5645/WKBenergyspectrum|Worked Problem]] | |||
[[Worked by team]] |
Revision as of 15:05, 14 August 2013
It is possible to apply the WKB approximation to the radial equation using a method by R. E. Langer (1937).
Recall: ,
Now apply the transformations:
Note that for varying from 0 to infinity, will vary from minus infinity to plus infinity.
The radial equation then transforms into:
In this case the Bohr-Sommerfeld quantization rule becomes:
?
For a central potential: