General Formalism: Difference between revisions
m (moved Generalized derivation to General Formalism) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | {{Quantum Mechanics A}} | ||
A central potential | A central potential is a potential that depends only on the absolute value of the distance away from the potential's center. A central potential is rotationally invariant. We may use these properties to reduce this otherwise three-dimensional problem to an effective one-dimensional problem. The general form of the Hamiltonian for a particle immersed in such a potential is | ||
:<math>H=\frac{p^2}{2m}+V(|r|)</math> | :<math>\hat{H}=\frac{\hat{p}^2}{2m}+V(|\hat{r}|).</math> | ||
Due to | Due to rotational symmetry, <math>[\hat{H},\hat{L}_z]=0\!</math> and <math>[\hat{H},\hat{L}^2]=0.\!</math> This allows us to find a complete set of states that are simultaneous eigenstates of <math>\hat{H},\!</math> <math>\hat{L}_z,\!</math> and <math>\hat{L}^2.\!</math> We will label these eigenstates as <math>|n,l,m\rangle,\!</math> where <math>l\!</math> and <math>m\!</math> are as defined in the [[Angular Momentum|previous chapter]] and <math>n\!</math> represents the quantum numbers that define the radial dependence of the wave function; this is the only part of the state that depends on the exact form of the potential, as we will see shortly. | ||
From this we can get a state of the same energy for a given <math>l\!</math> with a degeneracy of <math>2l+1\!</math>. | From this we can get a state of the same energy for a given <math>l\!</math> with a degeneracy of <math>2l+1\!</math>. |
Revision as of 22:57, 31 August 2013
A central potential is a potential that depends only on the absolute value of the distance away from the potential's center. A central potential is rotationally invariant. We may use these properties to reduce this otherwise three-dimensional problem to an effective one-dimensional problem. The general form of the Hamiltonian for a particle immersed in such a potential is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}=\frac{\hat{p}^2}{2m}+V(|\hat{r}|).}
Due to rotational symmetry, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{H},\hat{L}_z]=0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{H},\hat{L}^2]=0.\!} This allows us to find a complete set of states that are simultaneous eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H},\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}_z,\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{L}^2.\!} We will label these eigenstates as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n,l,m\rangle,\!} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\!} are as defined in the previous chapter and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\!} represents the quantum numbers that define the radial dependence of the wave function; this is the only part of the state that depends on the exact form of the potential, as we will see shortly.
From this we can get a state of the same energy for a given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\!} with a degeneracy of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2l+1\!} . We can rewrite the Laplacian as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2=\frac{1}{r}\frac{\partial^2}{\partial r^2}r-\frac{L^2}{\hbar^2 r^2}}
This makes the Schrödinger equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\frac{1}{r}\frac{\partial^2}{\partial r^2}r+\frac{L^2}{2mr^2}+V(r)\right)\psi(r,\theta,\phi)=E\psi(r,\theta,\phi)}
Using separation of variables, , we get:
The term is referred to as the centrifugal barrier, which is associated with the motion of the particle. The classical analogue is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{l^2}{2mr^2} } . The centrifugal barrier prevents the particle from reaching the center of force, causing the wave function to vanish at this point. Multiplying both sides by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_{l^\prime m'}\!} and integrating over the angular dependence reduces the equation to merely a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} .
Now if we let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)=rf_l(r)\!} , this gives the radial Schrödinger equation:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2 l(l+1)}{2mr^2}+V(r)\right)u_l(r)=Eu_l(r)}
Due to the boundary condition that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(r)\!} must be finite the origin, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)\!} must vanish.
Often looking at the asymptotic behavior of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)\!} can be quite helpful.
As Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow 0\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)\ll\frac{1}{r^2}\!} , the dominating term becomes the centrifugal barrier giving the approximate Hamiltonian:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2 l(l+1)}{2mr^2}}
which has the solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)\sim r^{l+1},r^{-l}\!} where only the first term is physically possible because the second blows up at the origin.
As Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow\infty\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle rV(r)\rightarrow 0} (which does not include the monopole Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r}} coulomb potential), the Hamiltonian approximately becomes
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}u_l(r)=Eu_l(r)} .
Letting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=-i\sqrt{\frac{2mE}{\hbar^2}}} gives a solution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)=Ae^{kr}+Be^{-kr}\!} , where when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\!} is real, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=0\!} , but both terms are needed when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\!} is imaginary.
Nomenclature
Historically, the first four (previously five) values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\!} have taken on names, and additional values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\!} are referred to alphabetically:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} l = 0 & \mbox{s-wave (sharp)}\\ l = 1 & \mbox{p-wave (principal)}\\ l = 2 & \mbox{d-wave (diffuse)}\\ l = 3 & \mbox{f-wave (fundamental)}\\ l = 4 & \mbox{g-wave (previously called t-wave for thick)}\\ l = 5 & \mbox{h-wave}\\ \end{cases} }
Worked Problem involving the energy levels in a central potential.