Isotropic Harmonic Oscillator: Difference between revisions
No edit summary |
No edit summary |
||
Line 41: | Line 41: | ||
which reduces to | which reduces to | ||
<math>\sum_{n=0}^{\infty}\left[(n+2)(n+2l+3)a_{n+2}+\left(-\frac{2M\omega}{\hbar}n+\frac{2ME}{\hbar^2}-(2l+3)\frac{M\omega}{\hbar}\right)a_n\right]r^n=0. | <math>\frac{2(l+1)}{r}a_1+\sum_{n=0}^{\infty}\left[(n+2)(n+2l+3)a_{n+2}+\left(-\frac{2M\omega}{\hbar}n+\frac{2ME}{\hbar^2}-(2l+3)\frac{M\omega}{\hbar}\right)a_n\right]r^n=0. | ||
</math> | </math> | ||
For this equation to hold, the coefficients of each of the powers of <math>r\!</math> must vanish seperately. | For this equation to hold, the coefficients of each of the powers of <math>r\!</math> must vanish seperately. Doing this for the positive powers of <math>r\!</math> yields the following recursion relation: | ||
<math>(n+2)(n+2l+3)a_{n+2}=\left[-\frac{2ME}{\hbar^2}+(2n+2l+3)\frac{M\omega}{\hbar}\right]a_n</math> | <math>(n+2)(n+2l+3)a_{n+2}=\left[-\frac{2ME}{\hbar^2}+(2n+2l+3)\frac{M\omega}{\hbar}\right]a_n</math> | ||
In addition, we have an <math>r^{-1}\!</math> term; for it to vanish, we must set <math>a_1=0.\!</math> This, combined with the above recursion relation, means that the function <math>f_{nl}(r)\!</math> contains only even powers of <math>r.\!</math> In other words, | |||
<math>f_{nl}(r)=\sum_{n=0,2,4,\ldots}^{\infty}a_{n}r^{n}=\sum_{n'=0}^{\infty}a_{n'}r^{n'}.</math> | |||
By a similar argument as the one that we employed for the [[Analytical Method for Solving the Simple Harmonic Oscillator|one-dimensional harmonic oscillator]], we find that, unless the series for <math>f_{nl}(r)\!</math> terminates, the resulting full wave function will diverge as <math>r\rightarrow\infty.</math> Because the series must only contain even powers of <math>r,\!</math> the resulting quantization condition on the energy is | |||
<math>\frac{2M}{\hbar^2}E_{n'l}-\frac{M\omega}{\hbar}(4n'+2l+3)=0,\,n'=0,1,2,3,\ldots,</math> | |||
or | |||
<math>E_{nl}=\left(n+\frac{3}{2}\right)\hbar\omega,\,n=0,1,2,3,\ldots,</math> | |||
where <math>n=2n'+l.\!</math> | |||
The degeneracy corresponding to the | The degeneracy corresponding to the <math>n^{\text{th}}\!</math> level may be found to be <math>\tfrac{1}{2}(n+1)(n+2).</math> | ||
The total | The total wave function of the isotropic harmonic oscillator is thus given by | ||
<math>\psi_{nlm}(r,\theta,\phi )=r^{l+1}e^{-M\omega r^2/2\hbar}f_l(r)Y_{lm}(\theta,\phi)=R_{nl}(r)Y_{lm}(\theta ,\phi ).</math> |
Revision as of 01:18, 1 September 2013
We now solve the isotropic harmonic oscillator using the formalism that we have just developed. While it is possible to solve it in Cartesian coordinates, we gain additional insight by solving it in spherical coordinates, and it is easier to determine the degeneracy of each energy level.
The radial part of the Schrödinger equation for a particle of mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\!} in an isotropic harmonic oscillator potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=\frac{1}{2}M\omega^{2}r^2} is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{d^2u_{nl}}{dr^2}+\left(\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2} + \frac{1}{2}M\omega^{2}r^2\right)u_{nl}=Eu_{nl}.}
Let us begin by looking at the solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{nl}\!} in the limits of small and large Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r.\!}
As Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow 0\!} , the equation reduces to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{d^2u_{nl}}{dr^2}+\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2}u_{nl}=Eu_{nl}.}
The only solution of this equation that does not diverge as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow 0} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{nl}(r)\simeq r^{l+1}.}
In the limit as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow \infty,} on the other hand, the equation becomes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{d^2u_{nl}}{dr^2}+\frac{1}{2}M\omega^{2}r^2u_{nl}=Eu_{nl}}
whose solution is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{nl}(r)\simeq e^{-M\omega r^2/2\hbar}.}
We may now assume that the general solution to the equation is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{nl}(r)=r^{l+1}e^{-M\omega r^2/2\hbar}f_{nl}(r).}
Substituting this expression into the original equation, we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^2f_{nl}}{dr^2}+2\left(\frac{l+1}{r}-\frac{M\omega}{\hbar}r\right)\frac{df_{nl}}{dr}+\left[\frac{2ME}{\hbar^2}-(2l+3)\frac{M\omega}{\hbar}\right]f_{nl}=0.}
We now use a series solution for this equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{nl}(r)=\sum_{n=0}^{\infty}a_{n}r^n= a_{0}+a_{1}r+a_{2}r^2+a_{3}r^3+\ldots +a_{n}r^n+\ldots}
Substituting this solution into the reduced form of the equation, we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} \left[n(n-1)a_{n}r^{n-2}+2 \left( \frac{l+1}{r}- \frac{M\omega}{\hbar}r\right) na_nr^{n-1} + \left[\frac{2ME}{\hbar^2} - (2l+3)\frac{M\omega}{\hbar}\right] a_n r^n\right]=0, }
which reduces to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2(l+1)}{r}a_1+\sum_{n=0}^{\infty}\left[(n+2)(n+2l+3)a_{n+2}+\left(-\frac{2M\omega}{\hbar}n+\frac{2ME}{\hbar^2}-(2l+3)\frac{M\omega}{\hbar}\right)a_n\right]r^n=0. }
For this equation to hold, the coefficients of each of the powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} must vanish seperately. Doing this for the positive powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} yields the following recursion relation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n+2)(n+2l+3)a_{n+2}=\left[-\frac{2ME}{\hbar^2}+(2n+2l+3)\frac{M\omega}{\hbar}\right]a_n}
In addition, we have an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{-1}\!} term; for it to vanish, we must set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1=0.\!} This, combined with the above recursion relation, means that the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{nl}(r)\!} contains only even powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r.\!} In other words,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{nl}(r)=\sum_{n=0,2,4,\ldots}^{\infty}a_{n}r^{n}=\sum_{n'=0}^{\infty}a_{n'}r^{n'}.}
By a similar argument as the one that we employed for the one-dimensional harmonic oscillator, we find that, unless the series for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{nl}(r)\!} terminates, the resulting full wave function will diverge as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow\infty.} Because the series must only contain even powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r,\!} the resulting quantization condition on the energy is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2M}{\hbar^2}E_{n'l}-\frac{M\omega}{\hbar}(4n'+2l+3)=0,\,n'=0,1,2,3,\ldots,}
or
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{nl}=\left(n+\frac{3}{2}\right)\hbar\omega,\,n=0,1,2,3,\ldots,}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2n'+l.\!}
The degeneracy corresponding to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{\text{th}}\!} level may be found to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{1}{2}(n+1)(n+2).}
The total wave function of the isotropic harmonic oscillator is thus given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{nlm}(r,\theta,\phi )=r^{l+1}e^{-M\omega r^2/2\hbar}f_l(r)Y_{lm}(\theta,\phi)=R_{nl}(r)Y_{lm}(\theta ,\phi ).}