WKB in Spherical Coordinates: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
In this case, the [[WKB Approximation#Bound States Within the WKB Approximation|Bohr-Sommerfeld quantization rule]] is as in the purely one-dimensional case, but with an effective potential, | In this case, the [[WKB Approximation#Bound States Within the WKB Approximation|Bohr-Sommerfeld quantization rule]] is as in the purely one-dimensional case, but with an effective potential, | ||
<math>V_{\text{eff}}(r)=V(r)+\frac{\hbar^2 | <math>V_{\text{eff}}(r)=V(r)+\frac{\hbar^2(\ell+\frac{1}{2})^2}{2mr^2}.</math> | ||
==Problems== | ==Problems== |
Revision as of 02:34, 13 January 2014
It is possible to apply the WKB approximation to the radial equation using a method by R. E. Langer (1937).
Recall that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(r)=rR(r),\!}
and that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(r)\!} satisfies the effective one-dimensional Schrödinger equation,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V(r)-E\right] u(r)=0.}
We now perform the following transformations:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r = e^{s};} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u(r) = W(s)e^{\frac{1}{2}s}}
Note that, for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<r<\infty,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty<s<\infty.\!} The radial equation becomes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{d^{2}W}{ds^{2}}+\frac{2m}{\hbar^{2}}\left[E-V(e^{s})-\frac{\hbar^2}{2m}\left(l+\frac{1}{2}\right)^{2}e^{-2s}\right]e^{2s}=0.}
In this case, the Bohr-Sommerfeld quantization rule is as in the purely one-dimensional case, but with an effective potential,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{\text{eff}}(r)=V(r)+\frac{\hbar^2(\ell+\frac{1}{2})^2}{2mr^2}.}
Problems
(1) Use the WKB approximation to estimate the energy spectrum for a Hydrogen atom.
Hint: Use the relation,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{2}-Vr+T=(r_{1}-r)(r_{2}-r),\!}
where
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=\frac{\hbar^2(l+\tfrac{1}{2})^2}{2mE},\,V=\frac{e^2}{E},}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_1\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_2\!} are the classical turning points of the (effective) potential appearing in the WKB approximation for this problem, and the integral,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{r_1}^{r_2}\sqrt{{\frac{(x-a)(x-b)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}.}
Consider the potential,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) = V_{0}\ln(r/a), }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{0} } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} are constants.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{r_{0}}p(r)dr = (n-1/4)\pi \hbar}
Treat only the case l = 0. Show the spacing between the levels is independent of mass.