Photoelectric Effect: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | |||
Another contributing factor to the emergence of the theory of Quantum Mechanics came with the realization of the particle nature of light through explanation of the photoelectric effect. | Another contributing factor to the emergence of the theory of Quantum Mechanics came with the realization of the particle nature of light through explanation of the photoelectric effect. | ||
Revision as of 13:19, 31 August 2011
Another contributing factor to the emergence of the theory of Quantum Mechanics came with the realization of the particle nature of light through explanation of the photoelectric effect.
Consider a system composed of light hitting a metal plate. From experimental observations, first observed by Hertz in 1887, and later by Hallwachs, Stoletov, and Lenard in 1900, a current can be measured when light is incident on the metal plate. During this period, the classical point of view was that an electron was bound inside of an atom, and an excitation energy was needed in order to release it from the atom. This energy could be brought forth in the form of light. The classical point of view also included the idea that the energy of the light was proportional to its intensity. Therefore, if enough energy (light) is absorbed by the electron, the electron would eventually be released. However, this was not the case. Several odd results came from these studies. First it was noted that, while the current did appear to be proportional to the intensity of the incident light, there were certain minimum frequencies of light below which no current could be produced, regardless of the intensity of the incident beam. Also, the stopping potential of the emitted electrons appeared to depend upon the frequency of the radiation, and not the intensity at all. Finally, the emission appeared to take place instantaneously for any intensity so long as the minimum frequency condition was satisfied.
In 1905, Einstein began offering possible explanations for the odd observations made regarding the photoelectric effect. Einstein realized that the classical view of light as a wave was not entirely true, that light must also behave like a particle. This allowed him to postulate that the energy of the incident radiation was not continuous, but was rather composed of quantized packets, proportional to the frequency of the wavelength of incident light. These corpuscles could then be seen to be completely absorbed by an atom, rather then spreading out over the structure like a wave would, so that the absorption/emission would happen instantly. He commented that since electrons were inherently bound to the atom, a certain minimum energy would be required to remove them, and thus if a corpuscle did not have enough energy, i.e. its frequency was too low, the atom would merely absorb and release it, rather then kicking out an electron as well. From this result, Millikan was able to confirm Einstein's theory a few years later by showing that the stopping potential did indeed depend linearly with respect to the frequency, with an additive term corresponding to the minimum energy required to remove the electron, its work function.
The equation describing the kinetic energy of the emitted electron is:
Where W is the work function and is the frequency of the incident photon. Photoelectric Example
From these results it was clearly evident that light was behaving in a particle-like manner, however the existence of various interference and diffraction experiments still gave evidence for a wave-like nature as well, and thus the dual nature of light was exposed, in stark contrast to classical physics.