|
|
Line 1: |
Line 1: |
| | {{Quantum Mechanics A}} |
| Multidimensional problems entail the possibility of having rotation as a part of solution. Just like in classical mechanics where we can calculate the [[Angular momentum|angular momentum]] using vector cross product, we have a very similar form of equation. However, just like any observable in quantum mechanics, this angular momentum is expressed by a Hermitian operator. Similar to classical mechanics we write the angular momentum operator <math>\mathbf L\!</math> as: | | Multidimensional problems entail the possibility of having rotation as a part of solution. Just like in classical mechanics where we can calculate the [[Angular momentum|angular momentum]] using vector cross product, we have a very similar form of equation. However, just like any observable in quantum mechanics, this angular momentum is expressed by a Hermitian operator. Similar to classical mechanics we write the angular momentum operator <math>\mathbf L\!</math> as: |
| :<math>\mathbf{L}=\mathbf{r}\times\mathbf{p}</math> | | :<math>\mathbf{L}=\mathbf{r}\times\mathbf{p}</math> |
Revision as of 16:41, 31 August 2011
Multidimensional problems entail the possibility of having rotation as a part of solution. Just like in classical mechanics where we can calculate the angular momentum using vector cross product, we have a very similar form of equation. However, just like any observable in quantum mechanics, this angular momentum is expressed by a Hermitian operator. Similar to classical mechanics we write the angular momentum operator
as:

Working in the spatial representation, we have
as our radial vector, while
is the momentum operator.

Using the cross product in Cartesian coordinate system, we get a component of
in each direction:

Similarly, using cyclic permutation on the coordinates x, y, z, we get the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as (the Einstein summation convention of summing over repeated indices is understood here)

with

Or we simply say that the even permutation gives 1, odd permutation gives -1, otherwise, we get 0.
We can immediately verify the following commutation relations:
![{\displaystyle [L_{\mu },r_{\nu }]=i\hbar \epsilon _{\mu \nu \lambda }r_{\lambda }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc3ecffa57e7be5d222c02172f33af8f0f2e0ec)
![{\displaystyle [L_{\mu },p_{\nu }]=i\hbar \epsilon _{\mu \nu \lambda }p_{\lambda }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b80d16e78d71c0227cd5b80d0e51d7598948afef)
(this relation tells us :
)
and
![{\displaystyle [{\hat {\mathbf {n} }}\cdot \mathbf {L} ,\mathbf {r} ]=i\hbar (\mathbf {r} \times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a650bd8c4fb2e6305ea3ede9d9f8804860146c)
![{\displaystyle [{\hat {\mathbf {n} }}\cdot \mathbf {L} ,\mathbf {p} ]=i\hbar (\mathbf {p} \times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72447de804c87582234bb8dbefb54fc3b11d365c)
![{\displaystyle [{\hat {\mathbf {n} }}\cdot \mathbf {L} ,\mathbf {L} ]=i\hbar (\mathbf {L} \times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14f22710e57a97952b9a66a9f7c4e85c7f01a6d0)
For example,
![{\displaystyle {\begin{aligned}\left[L_{\mu },r_{\nu }\right]&=[\epsilon _{\mu \lambda \rho }r_{\lambda }p_{\rho },r_{\nu }]=\epsilon _{\mu \lambda \rho }[r_{\lambda }p_{\rho },r_{\nu }]=\epsilon _{\mu \lambda \rho }r_{\lambda }[p_{\rho },r_{\nu }]\\&=\epsilon _{\mu \lambda \rho }r_{\lambda }{\frac {\hbar }{i}}\delta _{\rho \nu }=\epsilon _{\mu \lambda \nu }r_{\lambda }{\frac {\hbar }{i}}\\&=i\hbar \epsilon _{\mu \nu \lambda }r_{\lambda }\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/172b252cfd82e02f572cb8f84041be65ce4be000)
Also, note that for
,
![{\displaystyle {\begin{aligned}\left[L_{\mu },L^{2}\right]&=\left[L_{\mu },L_{\nu }L_{\nu }\right]\\&=L_{\nu }\left[L_{\mu },L_{\nu }\right]+\left[L_{\mu },L_{\nu }\right]L_{\nu }\\&=L_{\nu }i\hbar \epsilon _{\mu \nu \lambda }L_{\lambda }+i\hbar \epsilon _{\mu \nu \lambda }L_{\lambda }L_{\nu }\\&=i\hbar \epsilon _{\mu \nu \lambda }L_{\nu }L_{\lambda }-i\hbar \epsilon _{\mu \lambda \nu }L_{\lambda }L_{\nu }\\&=i\hbar \epsilon _{\mu \nu \lambda }L_{\nu }L_{\lambda }-i\hbar \epsilon _{\mu \nu \lambda }L_{\nu }L_{\lambda }\\&=0.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d97c307cfe11fe0ee55560695c0cfe7f3b458d5)