Orbital Angular Momentum Eigenfunctions: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Quantum Mechanics A}}
[[Phy5645/AngularMomentumProblem|Worked Problem]] about angular momentum.
[[Phy5645/AngularMomentumProblem|Worked Problem]] about angular momentum.



Revision as of 16:41, 31 August 2011

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Worked Problem about angular momentum.

Now we construct our eigenfunctions of the orbital angular momentum explicitly. The eigenvalue equation is

in terms of wave functions, becomes:

Solving for the dependence, we find

We construct the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta\!} dependence using the differential operator representation of

Where the eigenvalues of are:

We proceed by using the property of and , defined by

to find the following equation

Using the above equations, we get

And the solution is

where is an arbitrary function of . We can find the angular part of the solution by using . It turns out to be

And we know that are the spherical harmonics defined by

where the function with cosine argument is the associated Legendre polynomials defined by:

with

And so we then can write:

Central forces are derived from a potential that depends only on the distance r of the moving particle from a fixed point, usually the coordinate origin. Since such forces produce no torque, the orbital angular momentum is conserved.

We can rewrite the angular momentum as

As has been shown, angular momentum acts as the generator of rotation.

An exercise with angular momentum.