Orbital Angular Momentum Eigenfunctions: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | |||
[[Phy5645/AngularMomentumProblem|Worked Problem]] about angular momentum. | [[Phy5645/AngularMomentumProblem|Worked Problem]] about angular momentum. | ||
Revision as of 16:41, 31 August 2011
Worked Problem about angular momentum.
Now we construct our eigenfunctions of the orbital angular momentum explicitly. The eigenvalue equation is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_z|l,m\rangle=m\hbar|l,m\rangle}
in terms of wave functions, becomes:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r,\theta,\phi|L_z|l,m\rangle=-i\hbar\frac{\partial}{\partial \phi}\langle r,\theta,\phi|l,m\rangle=m\hbar \langle r,\theta,\phi|l,m\rangle}
Solving for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\!} dependence, we find
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r,\theta,\phi|l,m\rangle=e^{im\phi}\langle r,\theta,0|l,m\rangle}
We construct the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta\!} dependence using the differential operator representation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2\!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2=-\hbar^2\left(\frac{1}{\sin \theta^2}\frac{d^2}{d\phi^2}+\frac{1}{\sin \theta}\frac{d}{d \theta}\left(\sin\theta\frac{d}{d\theta}\right)\right)}
Where the eigenvalues of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2\!} are:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^2|l,m\rangle= \hbar^2 l(l+1)|l,m\rangle}
We proceed by using the property of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_+\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_-\!} , defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_\pm=\frac{\hbar}{i}e^{\pm i\phi}\left(\pm i\frac{d}{d\theta}-\cot \theta \frac{d}{d\phi}\right)}
to find the following equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r,\theta,\phi|L_+|l,l\rangle=-i\hbar e^{i\phi}\left(i\frac{\partial}{\partial\theta}-\cot \theta \frac{\partial}{\partial\phi}\right)\langle r,\theta,\phi|l,l\rangle=0}
Using the above equations, we get
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{\partial}{\partial \theta}-l\cot\theta\right)\langle r,\theta,\phi|l,l\rangle=0}
And the solution is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r,\theta,\phi|l,l\rangle=f(r)e^{il\phi}(\sin\theta)^l}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)\!} is an arbitrary function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} . We can find the angular part of the solution by using Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_-\!} . It turns out to be
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_l^m(x)=\frac{(-1)^m}{2^l l!}(1-x^2)^{m/2}\frac{d^{l+m}}{dx^{l+m}}(x^2-1)^l}
And we know that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m(\theta, \phi)\!} are the spherical harmonics defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m(\theta, \phi)=(-1)^l \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos \theta)e^{im\phi}}
where the function with cosine argument is the associated Legendre polynomials defined by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_l^m(x)=(-1)^m (1-x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)}
with
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_l(x)=\frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2-1)^l}
And so we then can write:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_l^m(x)=\frac{(-1)^m}{2^l l!}(1-x^2)^{m/2}\frac{d^{l+m}}{dx^{l+m}}(x^2-1)^l}
Central forces are derived from a potential that depends only on the distance r of the moving particle from a fixed point, usually the coordinate origin. Since such forces produce no torque, the orbital angular momentum is conserved.
We can rewrite the angular momentum as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf L=\mathbf r\times \frac{\hbar}{i}\nabla}
As has been shown, angular momentum acts as the generator of rotation.
An exercise with angular momentum.