Free Particle in Spherical Coordinates: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Quantum Mechanics A}}
A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0\!</math>.  So it's more useful to consider a particle moving in a uniform potential. The [[Schrödinger equation]] for the radial part of the wave function is:
A free particle is a specific case when <math>V_0=0\!</math> of the motion in a uniform potential <math>V(r)=V_0\!</math>.  So it's more useful to consider a particle moving in a uniform potential. The [[Schrödinger equation]] for the radial part of the wave function is:



Revision as of 16:42, 31 August 2011

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , it describes how a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

A free particle is a specific case when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0=0\!} of the motion in a uniform potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=V_0\!} . So it's more useful to consider a particle moving in a uniform potential. The Schrödinger equation for the radial part of the wave function is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}+V_0\right)u_l(r)=Eu_l(r)}

let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^2=\frac{2m}{\hbar^2}|E-V|} . Rearranging the equation gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\partial^2}{\partial r^2}+\frac{l(l+1)}{r^2}-k^2\right)u_l(r)=0}

Letting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=kr\!} gives the terms that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{r^{2}}=\frac{k^{2}}{\rho ^{2}}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial ^{2}}{\partial r^{2}}=k^{2}\frac{\partial ^{2}}{\partial \rho ^{2}}} . Then the equation becomes:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-\frac{\partial^2}{\partial\rho^2}+\frac{l(l+1)}{\rho^2}\right)u_l(\rho)=u_l(\rho)=d_ld_l^+u_l(\rho)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^{\dagger}\!} become the raising and lowering operators:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l=\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}, }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^\dagger=-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}}

Being Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^{\dagger}d_l=d_{l+1}d_{l+1}^{\dagger}} , it can be shown that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_l^\dagger u_l(\rho)=c_l u_{l+1}(\rho)}

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell =0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\partial^2}{\partial \rho^2} u_0(\rho)=u_0(\rho)} , gives the solution as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0(\rho)=A\sin(\rho)-B\cos(\rho)\!}

The raising operator can be applied to the ground state in order to find high orders of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u_0(\rho)} ;

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_0^\dagger u_0(\rho)=\left(-\frac{\partial}{\partial\rho}+\frac{l+1}{\rho}\right)u_0(\rho)=c_0 u_1(\rho)}

By this way, we can get the general expression:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(\rho)=\frac{u_l(\rho)}{\rho}=A_lj_l(\rho)+B_ln_l(\rho)} ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_l(\rho) \!} is spherical Bessel function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_l(\rho) \! } is spherical Neumann function.


Explicit Forms of the Spherical Bessel and Neumann Functions

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_0(z) = \frac{\sin(z)}{z} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1(z) = \frac{\sin(z)}{z^2} - \frac{\cos(z)}{z} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_2(z) = \left( \frac{3}{z^3} - \frac{1}{z}\right) \sin(z) - \frac{3}{z^2}\cos(z) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_0(z) = -\frac{\cos(z)}{z} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_1(z) = -\frac{\cos(z)}{z^2} - \frac{\sin(z)}{z} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_2(z) = - \left( \frac{3}{z^3} - \frac{1}{z}\right) \cos(z) - \frac{3}{z^2}\sin(z) }

The spherical Hankel functions of the first and second kind can be written in terms of the spherical Bessel and spherical Neumann functions, and are defined by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(1)} = j_{\ell}(z) + in_{\ell}(z) }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{\ell}^{(2)} = j_{\ell}(z) - in_{\ell}(z) }


The asymptotic form of the spherical Bessel and Neumann functions (as z Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} large) are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{\ell}(z) = \frac{\sin(z-\frac{\ell \pi}{2})}{z} }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\ell}(z) = \frac{\cos(z-\frac{\ell \pi}{2})}{z} }

The first few zeros of the spherical Bessel function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell = 0: 3.142, 6.283, 9.425, 12.566 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell = 1: 4.493, 7.725, 10.904, 14.066 }

The derivatives of the spherical Bessel and Neumann functions are defined by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j'_{\ell}(z) = \frac{\ell}{z}j_{\ell}(z) - j_{\ell+1}(z) }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n'_{\ell}(z) = \frac{\ell}{z}n_{\ell}(z) - n_{\ell+1}(z) }