Brief Derivation of Schrödinger Equation: Difference between revisions
No edit summary |
m (moved Brief deviation of Schrodinger Equation to Brief Derivation of Schrödinger Equation: Correct capitalization and spelling of title) |
(No difference)
|
Revision as of 12:41, 15 February 2013
Imagine a particle constrained to move along the x-axis, subject to some force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,t)\!} . Classically, we would investigate this system by applying Newton's second law, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma\!} . Assuming the force is conservative, it could also be expressed as the partial derivative with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\!} , and Newton's second law then reads:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x}}
The energy for the particle in this regime is given by the addition of its kinetic and potential energies:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = T + V = \frac{p^2}{2m} + V}
Now by applying the appropriate initial conditions for our particle, we then have a solution for the trajectory of the particle. As we will see, the above relation is only an approximation to actual physical reality. As we attempt to describe increasingly smaller objects we enter the quantum mechanical regime, where we cannot neglect the particles' wave properties. Allowing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{p \rightarrow \frac{\hbar}{i}\frac{d}{dx}}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{E \rightarrow i\hbar \frac{d}{dt}}} , we can use the energy equation for a classical particle above to find an equation that describes this wave nature. Thus, we find that the complex amplitude satisfies the Schrödinger equation for a scalar potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,t)\!} in one dimension:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}\psi(x,t)=\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x,t)\right]\psi(x,t) }
While in 3D:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}\psi(\textbf{r},t)=\left[-\frac{\hbar^2}{2m}\nabla^2+V(\textbf{r},t)\right]\psi(\textbf{r},t)}
Given a solution which satisfies the above Schrödinger equation, Quantum Mechanics provides a mathematical description of the laws obeyed by the probability amplitudes associated with quantum motion.
We can also generalize the Schrödinger equation to a system which contains Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \!} particles. We assume that the wave function is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\textbf{r}_1,\textbf{r}_2, \ldots, \textbf{r}_N, t) } and the Hamiltonian operator of the system can be expressed as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= \sum_{k=1}^N \frac{\textbf{p}^2_k}{2m_k}+V(\textbf{r}_1,\textbf{r}_2, \ldots, \textbf{r}_N) }
So the Schrödinger equation for a many-particle system is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar\frac{\partial}{\partial t}\psi(\textbf{r}_1,\textbf{r}_2, \ldots, \textbf{r}_N, t)=\left[\sum_{k=1}^N \frac{\textbf{p}^2_k}{2m_k}+V(\textbf{r}_1,\textbf{r}_2, \ldots, \textbf{r}_N)\right]\psi(\textbf{r}_1,\textbf{r}_2, \ldots, \textbf{r}_N, t) }