Charged Particles in an Electromagnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 34: Line 34:


...
...
==Motion in electromagnetic field==
The Hamiltonian of a particle of charge <math>e\!</math> and mass <math>m\!</math>
in an external electromagnetic field, which may be time-dependent, is given as follows:
:<math> H=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}\bold A(\bold r,t)\right)^2+e\phi(\bold r,t)</math>
where <math> \bold{A(\bold r,t)} \!</math> is the vector potential and <math>{\phi(\bold r,t)}\!</math> is the Coulomb potential of the electromagnetic field. In a problem, if there is a momentum operator <math>\bold p\!</math>, it must be replaced by
:<math>\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)</math>
if a particle is under the influence of an electromagnetic field.
Let's find out the [[Heisenberg and interaction picture: Equations of motion for operators#The Heisenberg Equation of Motion|Heisenberg equations of motion]] for the position and velocity operators.
For position operator<math>\bold r\!</math>, we have:
:<math>
\begin{align}
\frac{d\bold r}{dt} &= \frac{1}{i\hbar} \left[\bold r,H \right] \\
&= \frac{1}{i\hbar} \left[ \bold r, \frac{1}{2m} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2 + e\phi(\bold r,t)\right] \\
&= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2\right] \\
&= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right]\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right] \\
&= \frac{1}{2im\hbar} \left[\bold r, \bold p\right] \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p - \frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \bold p\right] \\
&= \frac{1}{2im\hbar}i\hbar \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)i\hbar \\
&= \frac{1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right),
\end{align}
</math>
where (<math>\bold r \!</math> does not depend on <math>t \!</math> explicitly)
is the equation of motion for the position operator <math>\bold r</math>.
This equation also defines the velocity operator <math>\bold v</math>:
                                               
:<math>\bold v= \frac {1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)</math>                                                                             
The Hamiltonian can be rewritten as:
:<math>H=\frac {m}{2}\bold v \cdot \bold v+e\phi</math>
Therefore, the Heisenberg equation of motion for the velocity operator is:
:<math>
\begin{align}
\frac{d\bold v}{dt} &=\frac {1}{i\hbar}\left[\bold v,H\right]+\frac{\partial \bold v}{\partial t} \\
&= \frac {1}{i\hbar}\left[\bold v,\frac{m}{2}\bold v \cdot \bold v\right]+\frac {1}{i\hbar}\left[\bold v,e\phi\right]-\frac{e}{mc} \frac{\partial \bold A}{\partial t}
\end{align}
</math>
(Note that <math>\bold p\!</math> does not depend on <math>t\!</math>  expicitly)
Let's use the following commutator identity:
:<math>\left[\bold v,\bold v \cdot \bold v\right]=\bold v \times \left(\bold v \times \bold v\right)-\left(\bold v \times \bold v\right) \times \bold v </math> 
Substituting, we get:
:<math>
\frac{d\bold v}{dt} = \frac{1}{i\hbar} \frac{m}{2}
\left(\bold v \times (\bold v \times \bold v) - (\bold v \times \bold v) \times \bold v \right) + \frac{1}{i\hbar} e[\bold v,\phi] - \frac{e}{mc} \frac{\partial \bold A}{\partial t}</math>
Now let's evaluate <math>\bold v \times \bold v \!</math> and <math>[\bold v,\phi] \!</math>:
:<math>
\begin{align}
(\bold v \times \bold v)_i &= \epsilon_{ijk} v_j v_k \\
&= \epsilon_{ijk}\frac{1}{m} \left(p_j-\frac{e}{c}A_j(\bold r,t)\right)
\frac{1}{m}\left(p_k-\frac{e}{c}A_k(\bold r,t)\right) \\
&= -\frac{e}{m^2c} \epsilon_{ijk}\left(p_j A_k(\bold r,t) +
A_j(\bold r,t)p_k\right) \\
&= -\frac{e}{m^2c}\epsilon_{ijk}p_jA_k(\bold r,t) - \frac{e}{m^2c}
\epsilon_{ijk} A_j(\bold r,t) p_k \\
&= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t)-\frac{e}{m^2c}
\epsilon_{ikj} A_k(\bold r,t) p_j \mbox{(Switching indices in the second terms)} \\
&= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t) + \frac{e}{m^2c}
\epsilon_{ijk} A_k(\bold r,t) p_j \\
&= -\frac{e}{m^2c}\epsilon_{ijk}\left[p_j,A_k(\bold r,t)\right] \\
&= -\frac{e}{m^2c}\epsilon_{ijk}\frac{\hbar}{i} \nabla_j A_k(\bold r,t) \\
&= i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right)_i
\end{align}
</math>
:<math>
\rightarrow \left[\bold v \times \bold v\right]=i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right) = i\hbar\frac{e}{m^2c}\bold B
</math>
and
:<math>
\begin{align}
\left[\bold v,\phi\right] &= \frac{1}{m} \left[\bold p-\frac{e}{c}\bold A(\bold r, t),\phi(\bold r,t)\right] \\
&= \frac{1}{m} \left[\bold p,\phi(\bold r,t) \right] \\
&= \frac{1}{m} \frac{\hbar}{i}\nabla\phi
\end{align}
</math>
Substituting and rearranging, we get:
:<math>
m\frac{d\bold v}{dt} = \frac{e}{2c}
\left(\bold v \times \bold B-\bold B \times \bold v \right) + e\bold E
</math>
where
:<math>
\bold E = -\nabla \phi - \frac{1}{c} \frac{\partial \bold A}{\partial t}
</math>                                                                                       
Above is the quantum mechanical version of the equation for the acceleration of the particle in terms of the Lorentz force.
These results can also be deduced in Hamiltonian dynamics due to the similarity between the Hamiltonian dynamics and quantum mechanics.


== Problems about Motion in electromagnetic field ==
== Problems about Motion in electromagnetic field ==

Revision as of 15:27, 12 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

A problem with some relation to the harmonic oscillator is that of the motion of a charged particle in a constant and uniform magnetic field. In classical mechanics, we know that the Hamiltonian for this system is

where is the charge of the particle and is the vector potential. In fact, to obtain the Hamiltonian for any system in the presence of a magnetic field, we simply make the replacement, In quantum mechanics, we introduce the magnetic field in the same way; this process is referred to as minimal coupling.

Gauge Invariance in Quantum Mechanics

We know from Maxwell's equations that the classical physics of a charged particle in an electromagnetic field is invariant under a gauge transformation, and where is the scalar potential and is a single-valued real function. We will now show how this is expressed in quantum mechanics.

In the position basis, the Schrödinger equation for a charged particle in an electromagnetic field is

If we now perform the above gauge transformation on the electromagnetic field, then this equation becomes

If we make the substitution, then we recover the original equation. Therefore, a gauge transformation of the magnetic field effectively introduces a phase factor to the wave function. This does result in a change in the canonical momentum, but it will have no effect on, for example, the probability density for finding the particle at a given position or, as we will see later, on the expectation value of the position or velocity of the particle.

We see that, in quantum mechanics, gauge invariance is expressed as follows. If one introduces a single-valued phase factor into the wave function, then it may be "canceled out" by a corresponding change in the electromagnetic potentials that the particle is subject to.

For a constant and uniform magnetic field we typically work with one of two gauges. One of these is the Laudau gauge,

or

The other is the symmetric gauge,

Eigenstates of a Charged Particle in a Static and Uniform Magnetic Field

...

Problems about Motion in electromagnetic field

Problem 1

Problem 2