The Free-Particle Propagator: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
(No difference)

Revision as of 10:45, 16 August 2013

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

Although our heuristic analysis yielded an exact free-particle propagator, we will now repeat the calculation without any approximation to illustrate the partial integration. Consider . The peculiar labeling of the end points will be justified later. Our problem is to perform the path integral


Where

is a symbolic way of saying "integrate over all paths connecting and (in the interval and ).

." Now, a path is fully specified by an infinity of numbers ,..., , ...,, namely, the values of the function at every point is the interval to .To sum over all paths, we must integrate over all possible values of these infinite variables, except of course and , which will be kept fixed at and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x_{N}}} , respectively. To tackle this problem,we trade the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x_{t}}} for a discrete approximation which agrees with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x_{t}}} at the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {N+1}} points.agrees with x{t) at the N + 1 points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_{n}=t_{0}+n\varepsilon} , n = 0,.. . , N, where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon =\frac{t_{n}-t_{0}}{N}} . In this approximation each path is specified by N+ 1 numbers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t_{0}),x(t_{1}),...,x(t_{N})} . The gaps in the discrete function are interpolated by straight lines. We hope that if we take the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\to \infty} at the end we will get a result that is insensitive to these approximations.t Now that the paths have been discretized, we must also do the same approximations.paths discretized, we must also do the same to the action integral. We replace the continuous path definition Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_{t_{0}}^{t_N}\mathcal{L}(t)dt\int_{t_{0}}^{t_N}\frac{1}{2}m\dot{x}^2dt}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\int_{t_{0}}^{N-1}\frac{m}{2}[\frac{x_{i+1}-x_{i}}{\varepsilon }^2]\varepsilon}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i}=x(t_{i})} . We wish to calculate

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U(x_{N},t_{N};x_{0},t_{0})=\int_{x_{0}}^{x_N} exp\frac{i S[x(t)]}{\hbar}D[x(t)]=lim A\int_{-\infty }^{\infty } \int_{-\infty }^{\infty } ...\int_{-\infty }^{\infty } exp(\frac{i}{\hbar}\frac{m}{2}\sum_{i=0}^{N-1}\frac{(x_{i+1}-x_{{i}})^2}{\varepsilon })dx_{1}...dx_{N-1}}

It is implicit in the above that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t_{0})} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t_{N})} have the values we have chosen at the outset. The factor A in the front is to be chosen at the end such that we get the correct scale for U when the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\to \infty} is taken. Let us first switch to the variables

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i}=(\frac{m}{2\hbar\varepsilon })^{1/2}x_{i}}

We then want

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle lim {A}'\int_{-\infty }^{\infty } \int_{-\infty }^{\infty } ...\int_{-\infty }^{\infty } exp(-\sum_{i=0}^{N-1}\frac{(y_{i+1}-y_{{i}})^2}{i } dy_{1}...dy_{N-1}}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {A}'=(\frac{2\hbar\varepsilon }{m })^{\frac{N-1}{2}}}

Although the multiple integral looks formidable, it is not. Let us begin by doing the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{1}} integration. Considering just the part of the integrand that involves Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{1}} , we get


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty }^{\infty }exp\left (\frac{-1}{i}(y_{2}-y_{1})^2+(y_{1}-y_{0})^2\right )dy_{1}=(\frac{i\pi }{2})^{1/2}e^\frac{-(y_{2}-y_{0})^2}{2i}}

Consider next the integration over yr. Bringing in the part of the integrand involving Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{2}} and combining it with the result above we compute next


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\frac{i\pi}{2})^{1/2} \int_{-\infty }^{\infty }e^\frac{-(y_{3}-y_{2})^2}<math>{i}e^\frac{-(y_{2}-y_{0})^2}{2i}dy_{2}=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\frac{(i\pi )^{2}}{3})^{\frac{1}{2}}e^\frac{-(y_{3}-y_{0})^2}{3i}}