|
|
Line 1: |
Line 1: |
| {{Quantum Mechanics A}} | | {{Quantum Mechanics A}} |
| Multidimensional problems entail the possibility of having rotation as a part of solution. Just like in classical mechanics where we can calculate the [[Angular momentum|angular momentum]] using vector cross product, we have a very similar form of equation. However, just like any observable in quantum mechanics, this angular momentum is expressed by a Hermitian operator. Similar to classical mechanics we write the angular momentum operator <math>\mathbf L\!</math> as:
| | In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum: |
| :<math>\mathbf{L}=\mathbf{r}\times\mathbf{p}</math> | |
|
| |
|
| Working in the spatial representation, we have <math>\mathbf{r}</math> as our radial vector, while <math>\mathbf{p}</math> is the momentum operator.
| | <math>\hat{\mathbf{L}}=\hat{\mathbf{r}}\times\hat{\mathbf{p}}</math> |
| :<math>\mathbf{p}=-i\hbar\nabla</math>
| |
|
| |
|
| Using the cross product in Cartesian coordinate system, we get a component of <math>\bold L\!</math> in each direction:
| | Working in the position representation, this becomes |
| :<math>L_x=yp_z-zp_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\!</math>
| |
|
| |
|
| Similarly, using cyclic permutation on the coordinates x, y, z, we get the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as (the Einstein summation convention of summing over repeated indices is understood here)
| | <math>\hat{\mathbf{L}}=\mathbf{r}\times\frac{\hbar}{i}\nabla.</math> |
| :<math>L_{\mu}=\epsilon_{\mu\nu\lambda}r_\nu p_\lambda\!</math>
| | |
| with
| | Evaluating the cross product in the Cartesian coordinate system, we get a component of <math>\mathbf{L}\!</math> in each direction; for example, |
| :<math>\epsilon_{\mu\nu\lambda} =
| | |
| | :<math>\hat{L}_x=\hat{y}\hat{p}_z-\hat{z}\hat{p}_y=\frac{\hbar}{i}\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right),</math> |
| | |
| | and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as |
| | |
| | <math>\hat{L}_{\mu}=\epsilon_{\mu\nu\lambda}\hat{r}_\nu\hat{p}_\lambda,</math> |
| | |
| | where |
| | |
| | <math>\epsilon_{\mu\nu\lambda} = |
| \begin{cases} | | \begin{cases} |
| +1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\ | | +1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (1,2,3), (3,1,2) \mbox{ or } (2,3,1), \\ |
| -1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\ | | -1, & \mbox{if } (\mu,\nu,\lambda) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3), \\ |
| 0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu. | | 0, & \mbox{otherwise: }\mu=\nu \mbox{ or } \nu=\lambda \mbox{ or } \lambda=\mu |
| \end{cases} | | \end{cases} |
| </math> | | </math> |
| Or we simply say that the even permutation gives 1, odd permutation gives -1, otherwise, we get 0.
| |
|
| |
|
| We can immediately verify the following commutation relations: | | and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations). |
| :<math>[L_\mu,r_\nu]=i\hbar\epsilon_{\mu\nu\lambda}r_\lambda</math>
| | |
| :<math>[L_\mu,p_\nu]=i\hbar\epsilon_{\mu\nu\lambda}p_\lambda</math>
| | We can immediately verify the following commutation relations: |
| :<math>[L_\mu,L_\nu]=i\hbar\epsilon_{\mu\nu\lambda}L_\lambda</math> (this relation tells us :<math>\mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}</math>)
| | |
| and
| | <math>[\hat{L}_\mu,\hat{x}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda</math> |
| :<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{r}]=i\hbar(\mathbf{r}\times\hat{\mathbf{n}})</math> | | |
| :<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{p}]=i\hbar(\mathbf{p}\times\hat{\mathbf{n}})</math> | | <math>[\hat{L}_\mu,\hat{p}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{p}_\lambda</math> |
| :<math>[\hat{\mathbf{n}}\cdot\mathbf{L},\mathbf{L}]=i\hbar(\mathbf{L}\times\hat{\mathbf{n}})</math> | | |
| | <math>[\hat{L}_\mu,\hat{L}_\nu]=i\hbar\epsilon_{\mu\nu\lambda}\hat{L}_\lambda</math> |
| | |
| | The last relation may also be written as |
| | |
| | <math>\mathbf{L}\times\mathbf{L}=i\hbar\mathbf{L}.</math> |
| | |
| | Furthermore, |
| | |
| | :<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{r}}]=i\hbar(\hat{\mathbf{r}}\times\hat{\mathbf{n}})</math> |
| | :<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{p}}]=i\hbar(\hat{\mathbf{p}}\times\hat{\mathbf{n}})</math> |
| | :<math>[\hat{\mathbf{n}}\cdot\hat{\mathbf{L}},\hat{\mathbf{L}}]=i\hbar(\hat{\mathbf{L}}\times\hat{\mathbf{n}})</math> |
|
| |
|
| For example, | | For example, |
| :<math> | | :<math> |
| \begin{align} | | \begin{align} |
| \left[L_\mu,r_\nu\right] &= [\epsilon_{\mu\lambda\rho}r_\lambda p_\rho,r_\nu] = \epsilon_{\mu\lambda\rho}[r_\lambda p_\rho,r_\nu] = \epsilon_{\mu\lambda\rho}r_\lambda[ p_\rho,r_\nu] \\ | | \left[\hat{L}_\mu,\hat{x}_\nu\right] &= [\epsilon_{\mu\lambda\rho}\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}[\hat{x}_\lambda \hat{p}_\rho,\hat{x}_\nu] = \epsilon_{\mu\lambda\rho}\hat{x}_\lambda[\hat{p}_\rho,\hat{x}_\nu] \\ |
| &= \epsilon_{\mu\lambda\rho}r_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}r_\lambda\frac{\hbar}{i} \\ | | &= \epsilon_{\mu\lambda\rho}\hat{x}_\lambda\frac{\hbar}{i}\delta_{\rho\nu} = \epsilon_{\mu\lambda\nu}\hat{x}_\lambda\frac{\hbar}{i} \\ |
| &= i\hbar\epsilon_{\mu\nu\lambda}r_\lambda | | &= i\hbar\epsilon_{\mu\nu\lambda}\hat{x}_\lambda. |
| \end{align} | | \end{align} |
| </math> | | </math> |
| | | |
| Also, note that for <math>L^2=L_x^2+L_y^2+L_z^2=L_{\mu} L_{\mu}</math>, | | Also, note that for <math>\hat{L}^2=\hat{L}_x^2+\hat{L}_y^2+\hat{L}_z^2=\hat{L}_{\mu}\hat{L}_{\mu},</math> |
|
| |
|
| :<math> | | :<math> |
| \begin{align} | | \begin{align} |
| \left[L_{\mu},L^2\right] &= \left[L_{\mu},L_{\nu} L_{\nu}\right] \\ | | \left[\hat{L}_{\mu},\hat{L}^2\right] &= \left[\hat{L}_{\mu},\hat{L}_{\nu}\hat{L}_{\nu}\right] \\ |
| &= L_{\nu}\left[L_{\mu},L_{\nu}\right]+\left[L_{\mu},L_{\nu}\right]L_{\nu} \\ | | &= \hat{L}_{\nu}\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]+\left[\hat{L}_{\mu},\hat{L}_{\nu}\right]\hat{L}_{\nu} \\ |
| &= L_{\nu} i\hbar \epsilon_{\mu\nu\lambda} L_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} L_{\lambda} L_{\nu} \\ | | &= \hat{L}_{\nu} i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} + i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\lambda} \hat{L}_{\nu} \\ |
| &= i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu} L_{\lambda} L_{\nu} \\ | | &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\lambda\nu}\hat{L}_{\lambda}\hat{L}_{\nu} \\ |
| &= i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda} L_{\nu} L_{\lambda} \\ | | &= i\hbar \epsilon_{\mu\nu\lambda} \hat{L}_{\nu}\hat{L}_{\lambda} - i\hbar \epsilon_{\mu\nu\lambda}\hat{L}_{\nu}\hat{L}_{\lambda} \\ |
| &= 0. | | &= 0. |
| \end{align} | | \end{align} |
| </math> | | </math> |
In many multidimensional problems, we often deal with rotational motion of particles, and thus we are interested in treating angular momentum in the framework of quantum mechanics. The (orbital) angular momentum operator in quantum mechanics is given by the cross product of the position of the particle with its momentum:
Working in the position representation, this becomes
Evaluating the cross product in the Cartesian coordinate system, we get a component of
in each direction; for example,

and similarly the other two components of the angular momentum operator. All of these can be written in a more compact form using the Levi-Civita symbol as
where
and we use the Einstein summation convention, in which sums over repeated indices are omitted. The above definition of the Levi-Civita symbol gives the "sign" of a permutation of 123 (it is 1 for even permutations, or -1 for odd permutations).
We can immediately verify the following commutation relations:
The last relation may also be written as
Furthermore,
![{\displaystyle [{\hat {\mathbf {n} }}\cdot {\hat {\mathbf {L} }},{\hat {\mathbf {r} }}]=i\hbar ({\hat {\mathbf {r} }}\times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62faaa9a7c7f9d342f727906377d7cb10b253a69)
![{\displaystyle [{\hat {\mathbf {n} }}\cdot {\hat {\mathbf {L} }},{\hat {\mathbf {p} }}]=i\hbar ({\hat {\mathbf {p} }}\times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e74a0fe7e348f1bc8652f044dcb07a20ca21c70c)
![{\displaystyle [{\hat {\mathbf {n} }}\cdot {\hat {\mathbf {L} }},{\hat {\mathbf {L} }}]=i\hbar ({\hat {\mathbf {L} }}\times {\hat {\mathbf {n} }})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/781a3c2e930ff956cda43e043d1608a604e66e8d)
For example,
![{\displaystyle {\begin{aligned}\left[{\hat {L}}_{\mu },{\hat {x}}_{\nu }\right]&=[\epsilon _{\mu \lambda \rho }{\hat {x}}_{\lambda }{\hat {p}}_{\rho },{\hat {x}}_{\nu }]=\epsilon _{\mu \lambda \rho }[{\hat {x}}_{\lambda }{\hat {p}}_{\rho },{\hat {x}}_{\nu }]=\epsilon _{\mu \lambda \rho }{\hat {x}}_{\lambda }[{\hat {p}}_{\rho },{\hat {x}}_{\nu }]\\&=\epsilon _{\mu \lambda \rho }{\hat {x}}_{\lambda }{\frac {\hbar }{i}}\delta _{\rho \nu }=\epsilon _{\mu \lambda \nu }{\hat {x}}_{\lambda }{\frac {\hbar }{i}}\\&=i\hbar \epsilon _{\mu \nu \lambda }{\hat {x}}_{\lambda }.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eaf24497627e26fe5120db208dac7f48ad18cc0b)
Also, note that for
![{\displaystyle {\begin{aligned}\left[{\hat {L}}_{\mu },{\hat {L}}^{2}\right]&=\left[{\hat {L}}_{\mu },{\hat {L}}_{\nu }{\hat {L}}_{\nu }\right]\\&={\hat {L}}_{\nu }\left[{\hat {L}}_{\mu },{\hat {L}}_{\nu }\right]+\left[{\hat {L}}_{\mu },{\hat {L}}_{\nu }\right]{\hat {L}}_{\nu }\\&={\hat {L}}_{\nu }i\hbar \epsilon _{\mu \nu \lambda }{\hat {L}}_{\lambda }+i\hbar \epsilon _{\mu \nu \lambda }{\hat {L}}_{\lambda }{\hat {L}}_{\nu }\\&=i\hbar \epsilon _{\mu \nu \lambda }{\hat {L}}_{\nu }{\hat {L}}_{\lambda }-i\hbar \epsilon _{\mu \lambda \nu }{\hat {L}}_{\lambda }{\hat {L}}_{\nu }\\&=i\hbar \epsilon _{\mu \nu \lambda }{\hat {L}}_{\nu }{\hat {L}}_{\lambda }-i\hbar \epsilon _{\mu \nu \lambda }{\hat {L}}_{\nu }{\hat {L}}_{\lambda }\\&=0.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8cbbb13f0cb4319fe14492b8dcd0f3e01358d612)