Isotropic Harmonic Oscillator: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Quantum Mechanics A}} | {{Quantum Mechanics A}} | ||
The radial part of the [[Schrödinger equation]] for a particle of mass M in an isotropic [[Harmonic oscillator spectrum and eigenstates|harmonic oscillator]] potential | We now solve the isotropic harmonic oscillator using the formalism that we have just developed. While it is possible to solve it in Cartesian coordinates, we gain additional insight by solving it in spherical coordinates, and it is easier to determine the degeneracy of each energy level. | ||
The radial part of the [[Schrödinger Equation|Schrödinger equation]] for a particle of mass <math>M\!</math> in an isotropic [[Harmonic oscillator spectrum and eigenstates|harmonic oscillator]] potential <math>V(r)=\frac{1}{2}M\omega^{2}r^2</math> is given by: | |||
:<math>-\frac{\hbar^2}{2M}\frac{\partial^2u_{nl}(r)}{\partial r^2}+\left(\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2} + \frac{1}{2}Mw^{2}r^2\right)u_{nl}(r)=Eu_{nl}(r)</math> | :<math>-\frac{\hbar^2}{2M}\frac{\partial^2u_{nl}(r)}{\partial r^2}+\left(\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2} + \frac{1}{2}Mw^{2}r^2\right)u_{nl}(r)=Eu_{nl}(r)</math> |
Revision as of 00:07, 1 September 2013
We now solve the isotropic harmonic oscillator using the formalism that we have just developed. While it is possible to solve it in Cartesian coordinates, we gain additional insight by solving it in spherical coordinates, and it is easier to determine the degeneracy of each energy level.
The radial part of the Schrödinger equation for a particle of mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M\!} in an isotropic harmonic oscillator potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r)=\frac{1}{2}M\omega^{2}r^2} is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{\partial^2u_{nl}(r)}{\partial r^2}+\left(\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2} + \frac{1}{2}Mw^{2}r^2\right)u_{nl}(r)=Eu_{nl}(r)}
We look at the solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{nl}\!} in the asymptotic limits of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\!} .
As Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow 0\!} , the equation reduces to
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{\partial^2u_{l}(r)}{\partial r^2}+\frac{\hbar^2}{2M}\frac{l(l+1)}{r^2}u_{l}(r)=Eu_{l}(r)}
whose nondivergent solution is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)\simeq r^{^{l+1}}} .
On the otherhand, as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r\rightarrow \infty} , the equation becomes
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{2M}\frac{\partial^2u(r)}{\partial r^2}+\frac{1}{2}Mw^{2}r^2u(r)=Eu(r)}
whose solution is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(r)\simeq e^-{\frac{Mwr^2}{2\hbar}}} .
Combining the asymptotic limit solutions we choose the general solution to the equation as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_l(r)=f_l(r)r^{l+1}e^-\frac{Mwr^2}{2\hbar}}
Substituting this expression into the original equation,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2f_l(r) }{\partial r^2}+2\left(\frac{l+1}{r}-\frac{Mw}{\hbar}r\right)\frac{\partial f_l(r) }{\partial r}+\left[\frac{2ME}{\hbar^2}-(2l+3)\frac{Mw}{\hbar}\right]f_l(r) =0}
Now we try the power series solution
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(r)=\sum_{n=0}^{\infty}a_{n}r^n= a_{0}+a_{1}r+a_{2}r^2+a_{3}r^3+. . . +a_{n}r^n+...}
Substituting this solution into the reduced form of the equation,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} \left[n(n-1)a_{n}r^{n-2}+2 \left( \frac{l+1}{r}- \frac{Mw}{\hbar} \right) na_nr^{n-1} + \left[\frac{2ME}{\hbar^2} - (2l+3)\frac{Mw}{\hbar}\right] a_n r^n\right]=0 }
which reduces to the equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty}\left[n(n+2l+1)a_{n}r^{n-2}+\left(-\frac{2Mw}{\hbar}n+\frac{2ME}{\hbar^2}-(2l+3)\frac{Mw}{\hbar}\right)a_nr^n\right]=0 }
For this equation to hold, the coefficients of each of the powers of r must vanish seperately.
So,when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n =0 \!} the coefficient of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{-2} \!} is zero, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.(2l+1)a_0=0} implying that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0\!} need not be zero.
Equating the coefficient of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{-1} \!} to be zero, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.(2l+2)a_1=0\!} implying that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1\!} must be zero.
Equating the coefficient of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{-n}\!} to be zero, we get the recursion relation which is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty}(n+2)(n+2l+3)a_{n+2}=\left[-\frac{2ME}{\hbar^2}+(2n+2l+3)\frac{Mw}{\hbar}\right]a_n}
The function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(r)\!}
contains only even powers in n and is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(r)=\sum_{n=0}^{\infty }a_{2n}r^{2n}=\sum_{n^{'}=0,2,4}^{\infty }a_{n^{'}}r^{n^{'}}}
Now as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\rightarrow \infty\!} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_l(r)\!} diverges so that for finite solution, the series should stop after Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{n^{'}+2}\!} leading to the quantization condition:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2M}{\hbar^2}E_{n^{'}l}-\frac{Mw}{\hbar}(2n^{'}+2l+3)=0}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n^{'}l}=\left(n^{'}+l+\frac{3}{2}\right)\hbar w, n^{'}=0,1,2,3,...}
As a result, the energy of the isotropic harmonic oscillator is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}=\left(n+\frac{3}{2}\right)\hbar w, n=0,1,2,3,... } with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=n^{'}+l\!}
The degeneracy corresponding to the nth level is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g=\frac{1}{2}(n+1)(n+2)}
The total wavefunction of the isotropic Harmonic Oscillator is given by:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_{nlm}(r,\theta ,\phi )=r^{l+1}f_l(r)Y_{lm}(\theta ,\phi)e^-\frac{Mw}{2\hbar}r^2=R_{nl}(r)Y_{lm}(\theta ,\phi )}