Harmonic Oscillator: Integration Over Fluctuations: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(Replaced content with '{{Quantum Mechanics A}}')
 
Line 1: Line 1:
{{Quantum Mechanics A}}
{{Quantum Mechanics A}}
Now, let's evaluate the [[Feynman path integral evaluation of the propagator|path integral]]<nowiki/>:
<math>A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}</math>                                                                      <br/>
Note that the integrand is taken over all possible trajectory starting at point <math>x_0</math> at time <math>t'=0</math>,
ending at point <math>x</math> at time <math>t'=t</math>.
Expanding this integral,
<math>A(t)=\left(\frac{m}{2\pi i \hbar}\right)^{\frac{N}{2}}\int_{-\infty}^{\infty} dy_1\ldots dy_{N-1}
e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{N-1}-
\frac{\Delta t}{2}ky^2_{N-1}\right)\right]}e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}(y_{N-1}-y_{N-2})^2-
\frac{\Delta t}{2}ky^2_{N-2}\right)\right]}\ldots
e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{1}-
\frac{\Delta t}{2}ky^2_{1}\right)\right]}
</math>
where <math>N\Delta t=t\!</math>.
Expanding the path trajectory in Fourier series, we have
<math>
y(t')=\sum_n a_n \sin\left(\frac{n\pi t'}{t}\right)
</math>
we may express <math>A(t)\!</math> in the form
<math>A(t)=C\int_{-\infty}^{\infty} da_1\ldots da_{N-1}
\exp{\left[\sum_{n=1}^{N-1}\frac{im}{2\hbar}\left(\left(\frac{n\pi}{t}\right)^2-
\omega^2\right)a^2_n\right]}
</math>
where C is a constant independent of the frequency which comes from the Jacobian of the transformation.
The important point is that it does not depend on the frequency <math>\omega\!</math>.
Thus, evaluating the integral of,
<math>A(t)=C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2-\omega^2\right]^{-\frac{1}{2}}=
C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2\right]^{-\frac{1}{2}}
\prod_{n=1}^{N-1}\left[1-\left(\frac{\omega t}{n\pi}\right)^2\right]^{-\frac{1}{2}}
</math>
where C' is a constant directly related to C and still independent of the frequency of motion.
Since the first product series in this final expression is also independent of the frequency of motion,
we can absorb it into our constant C' to have a new constant, C''. Simplifying further,
<math>A(t)=C''\sqrt{\frac{\omega t}{\sin(\omega t)}}
</math>
In the limit <math>\omega\rightarrow 0</math>, we already know that
<math>C''=\sqrt{\frac{m}{2\pi i \hbar t}}
</math>
                                           
Thus,
<math>A(t)=\sqrt{\frac{m}{2\pi i \hbar t}}\sqrt{\frac{\omega t}{\sin(\omega t)}}=
\sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}}
</math>
and
<math><x|\hat{U}(t,0)|x_0>=\sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}}
e^{\frac{i}{\hbar}\left(\frac{m\omega}{2sin(\omega t)}((x^2+x_0^2)cos(\omega t)-2xx_0)\right)}
</math>
==Reference==
For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.

Latest revision as of 12:07, 18 January 2014

Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian , it describes how a state evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering