Propagator for the Harmonic Oscillator: Difference between revisions
Line 52: | Line 52: | ||
<math>S_c=\frac{m\omega}{2\sin{\omega(t_f-t_i)}}[(x_i^2+x_f^2)\cos{\omega(t_f-t_i)}-2x_ix_f].</math> | <math>S_c=\frac{m\omega}{2\sin{\omega(t_f-t_i)}}[(x_i^2+x_f^2)\cos{\omega(t_f-t_i)}-2x_ix_f].</math> | ||
==Contribution From Fluctuations== | ==Contribution From Fluctuations== |
Revision as of 12:49, 18 January 2014
We will now evaluate the propagator for the harmonic oscillator. The Lagrangian for this system is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\tfrac{1}{2}m\dot{x}^2-\tfrac{1}{2}m\omega^2x^2.}
Before we begin, let us prove that the propagator will separate into two factors; one of these comes entirely from the classical motion of the system, and the other comes entirely from quantum fluctuations about said trajectory. To this end, let us write Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=x_c+y,\!} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c\!} is the classical trajectory and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\!} is the fluctuation, which will be a new integration variable for the path integral. If we take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_i\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_f\!} to be the initial and final times, respectively, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t_i)=y(t_f)=0.\!} Substituting this into the action, we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_{t_i}^{t_f} dt\,[\tfrac{1}{2}m(\dot{x}_c+\dot{y})^2-\tfrac{1}{2}m\omega^2(x_c+y)^2].}
We now expand out the squares, obtaining
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{x}_c^2-\tfrac{1}{2}m\omega^2x_c^2)+\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{y}^2-\tfrac{1}{2}m\omega^2y^2)+\int_{t_i}^{t_f} dt\,(m\dot{x}_c\dot{y}-m\omega^2x_cy).}
If we integrate by parts in the third term, we get
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{x}_c^2-\tfrac{1}{2}m\omega^2x_c^2)+\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{y}^2-\tfrac{1}{2}m\omega^2y^2)-\int_{t_i}^{t_f} dt\,m(\ddot{x}_c+\omega^2x_c)y.}
We know, however, that the classical motion obeys the equation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ddot{x}_c+\omega^2x_c=0.\!} As a result, the third term is zero, and the action separates into two contributions, one coming entirely from the classical motion, and the other coming entirely from quantum fluctuations. Denoting these two contributions as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_c(x_c)=\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{x}_c^2-\tfrac{1}{2}m\omega^2x_c^2)}
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_q(y)=\int_{t_i}^{t_f} dt\,(\tfrac{1}{2}m\dot{y}^2-\tfrac{1}{2}m\omega^2y^2),\!}
the propagator may now be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K(x_f,t_f;x_i,t_i)=e^{iS_c/\hbar}\int D[y(t)]\,e^{iS_q/\hbar}.}
We will now evaluate each of these contributions.
Contribution from Classical Path
We will begin by evaluating the "classical" contribution to the propagator. This is essentially just a problem of classical mechanics; we begin by solving for the classical motion of the particle. The equation of motion is, as stated earlier,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ddot{x}_c+\omega^2x_c=0.\!}
We impose the boundary conditions, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t_i)=x_i\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t_f)=x_f.\!} The solution of the equation of motion that satisfies these boundary conditions is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(t)=x_i\frac{\sin{\omega(t_f-t)}}{\sin{\omega(t_f-t_i)}}+x_f\frac{\sin{\omega(t-t_i)}}{\sin{\omega(t_f-t_i)}},}
and the corresponding velocity is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(t)=-\omega x_i\frac{\cos{\omega(t_f-t)}}{\sin{\omega(t_f-t_i)}}+\omega x_f\frac{\cos{\omega(t-t_i)}}{\sin{\omega(t_f-t_i)}}.}
If we now substitute these expressions into the Lagrangian and simplify, we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\frac{m\omega^2}{2\sin^2{\omega(t_f-t_i)}}\{(x_i^2+x_f^2)\cos[2\omega(t-t_i)]-2x_ix_f\cos{\omega(t_i+t_f-2t)}\}.}
If we now substitute this into the action, we finally obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_c=\frac{m\omega}{2\sin{\omega(t_f-t_i)}}[(x_i^2+x_f^2)\cos{\omega(t_f-t_i)}-2x_ix_f].}
Contribution From Fluctuations
Now, let's evaluate the path integral:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=A(t)=\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}}
Note that the integrand is taken over all possible trajectory starting at point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'=0} , ending at point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} at time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'=t} .
Expanding this integral,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=\left(\frac{m}{2\pi i \hbar}\right)^{\frac{N}{2}}\int_{-\infty}^{\infty} dy_1\ldots dy_{N-1} e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{N-1}- \frac{\Delta t}{2}ky^2_{N-1}\right)\right]}e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}(y_{N-1}-y_{N-2})^2- \frac{\Delta t}{2}ky^2_{N-2}\right)\right]}\ldots e^{\left[\frac{i}{\hbar}\left(\frac{m}{2\Delta t}y^2_{1}- \frac{\Delta t}{2}ky^2_{1}\right)\right]} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\Delta t=t\!} .
Expanding the path trajectory in Fourier series, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t')=\sum_n a_n \sin\left(\frac{n\pi t'}{t}\right) }
we may express Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)\!} in the form
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C\int_{-\infty}^{\infty} da_1\ldots da_{N-1} \exp{\left[\sum_{n=1}^{N-1}\frac{im}{2\hbar}\left(\left(\frac{n\pi}{t}\right)^2- \omega^2\right)a^2_n\right]} }
where C is a constant independent of the frequency which comes from the Jacobian of the transformation. The important point is that it does not depend on the frequency Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\!} . Thus, evaluating the integral of,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2-\omega^2\right]^{-\frac{1}{2}}= C'\prod_{n=1}^{N-1}\left[\left(\frac{n\pi}{t}\right)^2\right]^{-\frac{1}{2}} \prod_{n=1}^{N-1}\left[1-\left(\frac{\omega t}{n\pi}\right)^2\right]^{-\frac{1}{2}} }
where C' is a constant directly related to C and still independent of the frequency of motion. Since the first product series in this final expression is also independent of the frequency of motion, we can absorb it into our constant C' to have a new constant, C. Simplifying further,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=C''\sqrt{\frac{\omega t}{\sin(\omega t)}} }
In the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega\rightarrow 0} , we already know that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C''=\sqrt{\frac{m}{2\pi i \hbar t}} }
Thus,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(t)=\sqrt{\frac{m}{2\pi i \hbar t}}\sqrt{\frac{\omega t}{\sin(\omega t)}}= \sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}} }
and
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <x|\hat{U}(t,0)|x_0>=\sqrt{\frac{m}{2\pi i \hbar \sin(\omega t)}} e^{\frac{i}{\hbar}\left(\frac{m\omega}{2sin(\omega t)}((x^2+x_0^2)cos(\omega t)-2xx_0)\right)} }
Reference
For a more detailed evaluation of this problem, please see Barone, F. A.; Boschi-Filho, H.; Farina, C. 2002. "Three methods for calculating the Feynman propagator". American Association of Physics Teachers, 2003. Am. J. Phys. 71 (5), May 2003. pp 483-491.