WKB in Spherical Coordinates: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 38: | Line 38: | ||
<math>\int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2}.</math> | <math>\int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2}.</math> | ||
[[Phy5645/ | [[Phy5645/Hydrogen Atom WKB|Solution]] |
Latest revision as of 13:45, 18 January 2014
It is possible to apply the WKB approximation to the radial equation using a method by R. E. Langer (1937).
Recall that
and that satisfies the effective one-dimensional Schrödinger equation,
We now perform the following transformations:
Note that, for The radial equation becomes
In this case, the Bohr-Sommerfeld quantization rule is as in the purely one-dimensional case, but with an effective potential,
Problem
Use the WKB approximation to estimate the energy spectrum for a Hydrogen atom.
Hint: Use the relation,
where
and and are the classical turning points of the (effective) potential appearing in the WKB approximation for this problem, and the integral,