Charged Particles in an Electromagnetic Field

From PhyWiki
Jump to navigation Jump to search
Quantum Mechanics A
SchrodEq.png
Schrödinger Equation
The most fundamental equation of quantum mechanics; given a Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}} , it describes how a state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\Psi\rangle} evolves in time.
Basic Concepts and Theory of Motion
UV Catastrophe (Black-Body Radiation)
Photoelectric Effect
Stability of Matter
Double Slit Experiment
Stern-Gerlach Experiment
The Principle of Complementarity
The Correspondence Principle
The Philosophy of Quantum Theory
Brief Derivation of Schrödinger Equation
Relation Between the Wave Function and Probability Density
Stationary States
Heisenberg Uncertainty Principle
Some Consequences of the Uncertainty Principle
Linear Vector Spaces and Operators
Commutation Relations and Simultaneous Eigenvalues
The Schrödinger Equation in Dirac Notation
Transformations of Operators and Symmetry
Time Evolution of Expectation Values and Ehrenfest's Theorem
One-Dimensional Bound States
Oscillation Theorem
The Dirac Delta Function Potential
Scattering States, Transmission and Reflection
Motion in a Periodic Potential
Summary of One-Dimensional Systems
Harmonic Oscillator Spectrum and Eigenstates
Analytical Method for Solving the Simple Harmonic Oscillator
Coherent States
Charged Particles in an Electromagnetic Field
WKB Approximation
The Heisenberg Picture: Equations of Motion for Operators
The Interaction Picture
The Virial Theorem
Commutation Relations
Angular Momentum as a Generator of Rotations in 3D
Spherical Coordinates
Eigenvalue Quantization
Orbital Angular Momentum Eigenfunctions
General Formalism
Free Particle in Spherical Coordinates
Spherical Well
Isotropic Harmonic Oscillator
Hydrogen Atom
WKB in Spherical Coordinates
Feynman Path Integrals
The Free-Particle Propagator
Propagator for the Harmonic Oscillator
Differential Cross Section and the Green's Function Formulation of Scattering
Central Potential Scattering and Phase Shifts
Coulomb Potential Scattering

A problem with some relation to the harmonic oscillator is that of the motion of a charged particle in a constant and uniform magnetic field. In classical mechanics, we know that the Hamiltonian for this system is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac{1}{2m}\left (\mathbf{p}-\frac{e}{c}\mathbf{A}\right )^2,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\!} is the charge of the particle and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}} is the vector potential. In fact, to obtain the Hamiltonian for any system in the presence of a magnetic field, we simply make the replacement, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{p}\rightarrow\mathbf{p}-\frac{e}{c}\mathbf{A}.} In quantum mechanics, we introduce the magnetic field in the same way; this process is referred to as minimal coupling.

Gauge Invariance in Quantum Mechanics

We know from Maxwell's equations that the classical physics of a charged particle in an electromagnetic field is invariant under a gauge transformation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\rightarrow\Phi-\frac{1}{c}\frac{\partial\chi}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}\rightarrow\mathbf{A}+\nabla\chi,} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi\!} is the scalar potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi(\mathbf{r},t)\!} is a single-valued real function. We will now show how this is expressed in quantum mechanics.

In the position basis, the Schrödinger equation for a charged particle in an electromagnetic field is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i\hbar\frac{\partial\Psi}{\partial t}-e\Phi\Psi=-\frac{\hbar^2}{2m}\left (\nabla+\frac{ie}{\hbar c}\mathbf{A}\right )^2\Psi.}

If we now perform the above gauge transformation on the electromagnetic field, then this equation becomes

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -i\hbar\frac{\partial\Psi}{\partial t}-e\Phi\Psi+\frac{e}{c}\frac{\partial\chi}{\partial t}\Psi-\frac{\hbar^2}{2m}\left (\nabla+\frac{ie}{\hbar c}\mathbf{A}+\frac{ie}{\hbar c}\nabla\chi\right )^2\Psi.}

If we make the substitution, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi\rightarrow e^{-ie\chi/\hbar c}\Psi,} then we recover the original equation. Therefore, a gauge transformation of the magnetic field effectively introduces a phase factor to the wave function. This does result in a change in the canonical momentum, but it will have no effect on, for example, the probability density for finding the particle at a given position or, as we will see later, on the expectation value of the position or velocity of the particle.

We see that, in quantum mechanics, gauge invariance is expressed as follows. If one introduces a single-valued phase factor into the wave function, then it may be "canceled out" by a corresponding change in the electromagnetic potentials that the particle is subject to.

For a constant and uniform magnetic field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{B}=B\hat{\mathbf{z}},} we typically work with one of two gauges. One of these is the Laudau gauge,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r}) = -yB\hat{\mathbf{x}}} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xB\hat{\mathbf{y}}.}

The other is the symmetric gauge,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{A}(\mathbf{r})=-\tfrac{1}{2}yB\hat{\mathbf{x}}+\tfrac{1}{2}xB\hat{\mathbf{y}}.}

Motion in electromagnetic field

The Hamiltonian of a particle of charge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\!} and mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\!} in an external electromagnetic field, which may be time-dependent, is given as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}\bold A(\bold r,t)\right)^2+e\phi(\bold r,t)}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold{A(\bold r,t)} \!} is the vector potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\phi(\bold r,t)}\!} is the Coulomb potential of the electromagnetic field. In a problem, if there is a momentum operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!} , it must be replaced by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}

if a particle is under the influence of an electromagnetic field.

Let's find out the Heisenberg equations of motion for the position and velocity operators. For position operatorFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r\!} , we have:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold r}{dt} &= \frac{1}{i\hbar} \left[\bold r,H \right] \\ &= \frac{1}{i\hbar} \left[ \bold r, \frac{1}{2m} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2 + e\phi(\bold r,t)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)^2\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right]\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)\right] \\ &= \frac{1}{2im\hbar} \left[\bold r, \bold p\right] \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p - \frac{e}{c}\bold A(\bold r,t)\right) \left[\bold r, \bold p\right] \\ &= \frac{1}{2im\hbar}i\hbar \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right) + \frac{1}{2im\hbar} \left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)i\hbar \\ &= \frac{1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right), \end{align} }

where (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r \!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \!} explicitly) is the equation of motion for the position operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r} . This equation also defines the velocity operator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v= \frac {1}{m}\left(\bold p-\frac{e}{c}\bold A(\bold r,t)\right)}

The Hamiltonian can be rewritten as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=\frac {m}{2}\bold v \cdot \bold v+e\phi}

Therefore, the Heisenberg equation of motion for the velocity operator is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d\bold v}{dt} &=\frac {1}{i\hbar}\left[\bold v,H\right]+\frac{\partial \bold v}{\partial t} \\ &= \frac {1}{i\hbar}\left[\bold v,\frac{m}{2}\bold v \cdot \bold v\right]+\frac {1}{i\hbar}\left[\bold v,e\phi\right]-\frac{e}{mc} \frac{\partial \bold A}{\partial t} \end{align} }

(Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p\!} does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\!} expicitly)

Let's use the following commutator identity:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[\bold v,\bold v \cdot \bold v\right]=\bold v \times \left(\bold v \times \bold v\right)-\left(\bold v \times \bold v\right) \times \bold v }

Substituting, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\bold v}{dt} = \frac{1}{i\hbar} \frac{m}{2} \left(\bold v \times (\bold v \times \bold v) - (\bold v \times \bold v) \times \bold v \right) + \frac{1}{i\hbar} e[\bold v,\phi] - \frac{e}{mc} \frac{\partial \bold A}{\partial t}}

Now let's evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold v \times \bold v \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\bold v,\phi] \!} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} (\bold v \times \bold v)_i &= \epsilon_{ijk} v_j v_k \\ &= \epsilon_{ijk}\frac{1}{m} \left(p_j-\frac{e}{c}A_j(\bold r,t)\right) \frac{1}{m}\left(p_k-\frac{e}{c}A_k(\bold r,t)\right) \\ &= -\frac{e}{m^2c} \epsilon_{ijk}\left(p_j A_k(\bold r,t) + A_j(\bold r,t)p_k\right) \\ &= -\frac{e}{m^2c}\epsilon_{ijk}p_jA_k(\bold r,t) - \frac{e}{m^2c} \epsilon_{ijk} A_j(\bold r,t) p_k \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t)-\frac{e}{m^2c} \epsilon_{ikj} A_k(\bold r,t) p_j \mbox{(Switching indices in the second terms)} \\ &= -\frac{e}{m^2c}\epsilon_{ijk} p_j A_k(\bold r,t) + \frac{e}{m^2c} \epsilon_{ijk} A_k(\bold r,t) p_j \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\left[p_j,A_k(\bold r,t)\right] \\ &= -\frac{e}{m^2c}\epsilon_{ijk}\frac{\hbar}{i} \nabla_j A_k(\bold r,t) \\ &= i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right)_i \end{align} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow \left[\bold v \times \bold v\right]=i\hbar\frac{e}{m^2c}\left(\nabla \times \bold A\right) = i\hbar\frac{e}{m^2c}\bold B }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left[\bold v,\phi\right] &= \frac{1}{m} \left[\bold p-\frac{e}{c}\bold A(\bold r, t),\phi(\bold r,t)\right] \\ &= \frac{1}{m} \left[\bold p,\phi(\bold r,t) \right] \\ &= \frac{1}{m} \frac{\hbar}{i}\nabla\phi \end{align} }

Substituting and rearranging, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d\bold v}{dt} = \frac{e}{2c} \left(\bold v \times \bold B-\bold B \times \bold v \right) + e\bold E }

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold E = -\nabla \phi - \frac{1}{c} \frac{\partial \bold A}{\partial t} }

Above is the quantum mechanical version of the equation for the acceleration of the particle in terms of the Lorentz force.

These results can also be deduced in Hamiltonian dynamics due to the similarity between the Hamiltonian dynamics and quantum mechanics.

Problems about Motion in electromagnetic field

Problem 1

Problem 2